How Do Statically-Typed Functional
Programmers Author Codes?

Justin Lubin

Why Cal'e? [Evidence-Based Tools] [Eased Community Onboarding] [Understudied Audience]

let ® | let ® Type Construction
hardBit hardBit
_ Debug. todo . Debug.todo They start by iteratively constructing types to model their
in in o . o .
problem domain and encode design decisions.
@ let @ let [Feeling Odd When Types Are Amiss j [Iteratively Constructing Types and Expressions]
hardBit Int Maybe Int hardBit Int Maybe Int
hardBit hardBit
Debug.todo “”
in in

Set (Position, Position

Set (Position, Tile, Maybe Color, Position
Board, Set (Maybe Color, Position

Board

I kind of understand, maybe, what I've got, so I can do some
bottom-up exploration.

And I pretty much know where I want to be (which is the type
signatures), and it allows me to do some top-down programming.

And when its not clear to me how to connect the two, and ... I'm not
feeling super productive or I feel stuck trying to think from one end,

T just switch to the other to try to glean some more context.

L

type Exp = Add Exp Exp Div Exp Exp
eval : Exp Int
eval e
case e of
Add left right
eval left + eval right

Div numerator
raise DivisionByZero

® Focusing Techniques

They leverage types to help themselves focus by relying on
the compiler as an assistant and using these types to help
decompose their tasks.

[Relying on Compiler as Assistant] [Using Types to Reduce Context]

® Hierarchical and Opportunistic Programming

When faced with difficult or unknown problem domain, they
complement this systematic style of programming with an
exploratory one, the details of which are highly varied.

[Opportunistic Strategies] [Interplay of Hierarchical and Opportunistic Programming]

@ Mental Models and Expressing Intent

No matter the style of programming, they have diverse mental
models and express their intent in many ways, not all of which

produce valid code.

(Diversity of Mental Models) (Reasoning About Code Essence | (_Signaling and Exccuting Intent

