
How Statically-Typed Functional Programmers Author Code
Justin Lubin

justinlubin@berkeley.edu
University of California, Berkeley

Berkeley, California, USA

ABSTRACT

How working statically-typed functional programmers author code
is largely understudied. And yet, a better understanding of devel-
oper practices could pave the way for the design of more useful
and usable tooling, more ergonomic languages, and more effective
on-ramps into programming communities. The goal of this work is
to address this knowledge gap: to better understand the high-level
authoring patterns that statically-typed functional programmers
engage in. I did a grounded theory analysis of thirteen program-
ming sessions of practicing functional programmers, eight of which
also included a semi-structured interview. The theory I developed
gives insight into how the specific affordances of statically-typed
functional programming affect domain modeling, type construc-
tion, focusing techniques, exploratory strategies, mental models,
and expressions of intent. The success of this approach in revealing
program authorship patterns suggests that the same methodology
could be used to study other understudied programmer audiences.

CCS CONCEPTS

• Human-centered computing → HCI theory, concepts and

models; • Software and its engineering → Functional lan-

guages.

KEYWORDS

Static types, functional programming, grounded theory, need-finding,
interviews

ACM Reference Format:

Justin Lubin. 2021. How Statically-Typed Functional Programmers Author
Code. In CHI Conference on Human Factors in Computing Systems Extended
Abstracts (CHI ’21 Extended Abstracts), May 8–13, 2021, Yokohama, Japan.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3411763.3451515

1 INTRODUCTION

Statically-typed functional programming languages like Haskell,
OCaml, SML, Elm, and F# offer features and norms—like expres-
sive type systems, strong static guarantees, and an emphasis on
small and reusable functions free of side effects—that differenti-
ates them from other classes of languages. These attributes are
different enough from those found in more mainstream languages

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8095-9/21/05.
https://doi.org/10.1145/3411763.3451515

that they engender distinct modes of interaction between statically-
typed functional programmers and their language, environment,
and tooling.

The aim of this work is to understand how the specific affor-
dances of statically-typed functional programming affect the way
programmers author code. The end goal is to deepen our under-
standing of an understudied programmer population, lay the foun-
dation for evidence-based design of useful and usable languages
and tools, and elucidate tacit community knowledge, which could
itself ease the onboarding of new members to the community.

I employed a grounded theory approach [6] to analyzing thir-
teen statically-typed functional programmers engaged in coding
sessions, eight of which occurred live over Zoom and included
a semi-structured interview afterward. The remainder of these
sessions were drawn from livestreaming websites for increased eco-
logical validity. My theory unifies my observations in a framework
consisting of four primary categories: (1) type construction, (2) fo-
cusing techniques, (3) hierarchical and opportunistic programming,
and (4) mental models and expressing intent.

The methodology I used to develop this theory is generalizable to
other understudied classes of programmers. Moreover, the insights
generated by this theory can be used not only as a foundation for
improved languages and tooling, but also as a starting point for
further interdisciplinary investigation into why statically-typed
functional programmers author code the way that they do, whether
or not their strategies could be improved, and whether the behavior
of working functional programmers should shape how we teach
beginners.

In summary, I observed statically-typed functional programmers
write code and interviewed them about their code authoring pro-
cesses, resulting in:

• A grounded theory of how statically-typed functional pro-
grammers author code, including their domain modeling,
type construction, focusing techniques, exploratory strate-
gies, mental models, and expressions of intent.

• A template for future need-finding studies of understudied
programmer populations.

2 RELATEDWORK

Design Patterns. Design patterns are reusable high-level pro-
gram design templates (e.g., the abstract notion of an “iterator” for
sequentially accessing elements), popularized by the influential De-
sign Patterns program design compendium [4]. Although they have
have seen success in industry for promoting clear communication
and reusable code [2], their declarative nature gives little insight
into how these patterns are achieved or written in the first place.

https://doi.org/10.1145/3411763.3451515
https://doi.org/10.1145/3411763.3451515


CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan Justin Lubin

(a) Recruited Participants

ID Language Exp. (Years) Exp. (Kind)

P1 SML 3 Academia
P2 OCaml 9 Academia, industry
P3 OCaml 3 Academia, industry, open source
P4 OCaml 0.5 Academia
P5 Elm 3 Industry, open source
P6 Elm 1 Industry
P7 Reason 2.5 Academia
P8 Elm 7 Industry

(b) Livestreamers
ID Language Task

L1 Haskell HTTP requests to GitHub API
L2 Elm Board game with GUI
L3 Haskell REST API for cryptography
L4 OCaml Web server
L5 Haskell Advent of Code (coding challenge)

Table 1: Recruited Participants and Livestreamers. (Exp. denotes experience with statically-typed functional programming.)

Program Transformations. Low-level code edit actions appear
pervasively in code editors today as automated program transfor-
mations (e.g., tools such as Introduce Parameter and Reorder
Definition). Thompson details many such transformations appli-
cable specifically to statically-typed functional programming lan-
guages [9], focusing specifically on semantics-preserving refactors.
While these transformations provide a detailed characterization of
the low-level edits programmers undertake, they do not capture
the high-level intent of programmers as they construct code.

Psychology of Program Construction. Between the high-level,
declarative nature of design patterns and the low-level descrip-
tions of program transformations lies the gray area of how pro-
grammers connect these two extremes: the psychology of program
construction. One important distinction in the psychology of pro-
gramming is between hierarchical and opportunistic patterns of
program construction. Hierarchical programming is characterized
by a systematic approach of refining the abstract to the concrete via
a plan constructed ahead of time. Opportunistic programming is
characterized by deviations from this pattern (caused by, for exam-
ple, a lack of conceptual clarity or tasks that exceed the capabilities
of working memory) [5]. In this study, I am concerned not just with
programmers’ goals, but the processes by which they achieve these
goals. Accordingly, I explore the interplay between hierarchical
and opportunistic modalities in the context of statically-typed func-
tional programming, the affordances of which (e.g. expressive type
systems and exacting compiler guarantees) have substantial impact
on patterns of program construction.

Natural Programming. Myers et al. put forth a research agenda
of natural programming, or “aiming for the language and the envi-
ronment to work the way nonprogrammers expect” [8]. My study
shares the goal of understanding what is natural to those who write
code, but differs in its treatment of pre-existing expertise. What is
natural to expert statically-typed functional programmers is inex-
tricable from their training and experiences; I am concerned here
with the existing authoring patterns that these programmers follow,
regardless of their naturalness to those without training.

3 METHOD

Participants and Recruitment. I conducted study sessions with
eight participants with a variety of experience backgrounds, fo-
cusing mostly on those with at least two years of statically-typed
functional programming experience (Table 1a). I screened partici-
pants (recruited from personal contacts and Slack workspaces) via

a survey for (1) participants with sufficient prior experience with
statically-typed functional programming and (2) a diverse set of
languages.

Study Protocol. Study sessions consisted of two recorded back-
to-back sections of approximately 45 minutes each on Zoom. In the
first half, participants narrated their thought processes aloud as
they completed tasks in a statically-typed functional programming
language of their choice. I selected these tasks (such as implement-
ing a calculator, designing an API for 2D geometry, and performing
string manipulations) to be relatively open-ended and adapted them
as time went on as a form of theoretical sampling [6] to investigate
particular themes. Moreover, as participants completed tasks, I in-
crementally asked them to complete follow-up tasks to investigate
how they would adapt their code. In the second half, I asked partic-
ipants in a semi-structured interview to talk about their experience
with statically-typed functional programming and to elaborate on
particular topics that came up during their narration.

Livestreamers. To increase ecological validity and to introduce
an element of random diversity into my theoretical sampling, I
also analyzed 30–60 minute video clips from five statically-typed
functional programmers who publicly livestreamed coding sessions
(Table 1b). I took these video clips from Twitch and YouTube.1

Analysis. I used a grounded theory approach [6] to analyze the
session and livestream recordings. I started by tagging “chunks” of
each video with specific summaries. I then grouped these chunks
by similarity into open codes and kept track of salient observations
by writing them down in memos. Finally, as I continued the data
collection, I iteratively built up larger categories until identifying
the key categories at play in the programmers’ processes.

4 RESULTS

My grounded theory analysis revealed that:
(§4.1) Participants often started a task by iteratively constructing

types to model their problem domain and encode design
decisions.

(§4.2) Participants leveraged types to help themselves focus on
the task at hand by relying on the compiler as an assistant
and using these types to help them plan and decompose
their tasks.

(§4.3) Sometimes, when faced with a difficult or unknown prob-
lem domain, participants complemented this systematic

1Twitch: https://www.twitch.tv/. YouTube: https://www.youtube.com/.

https://www.twitch.tv/
https://www.youtube.com/


How Statically-Typed Functional Programmers Author Code CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan

Step 1

let
hardBit =
Debug.todo ""

in
⟨ body ⟩

Step 2

let
hardBit =
Debug.todo ""

in
⟨ body (using hardBit) ⟩

Step 3

let
hardBit : Int → Maybe Int
hardBit =
Debug.todo ""

in
⟨ body (using hardBit) ⟩

Step 4

let
hardBit : Int → Maybe Int
hardBit =

⟨ implementation of hardBit ⟩
in
⟨ body (using hardBit) ⟩

Figure 1: How P8 constructs a “hard bit” of a function. He (1) introduces the hard bit in a let binding, then (2) uses the new

variable in the body. This usage helps him (3) deduce an explicit type for the variable, which further helps him (4) implement

its definition.

style of programming with a more exploratory one, the
details of which were highly varied in comparison to the
systematic style.

(§4.4) Lastly, no matter the style of programming, participants
had diverse mental models and expressed their intent in
many different ways, not all of which produced valid code.

Some of these observations are not necessarily specific to statically-
typed functional programmers, but the following sections elaborate
on how they play out specifically in the statically-typed functional
programming process.

4.1 Type Construction

Using types for domain modeling is an important part of the work-
flow of statically-typed functional programmers. As P2 said, “That’s
usually my first instinct . . . let me understandmy domain, let’s write
down what these things are, let’s give them a name, let’s organize
them appropriately, and then we can start to define our behavior
on top of these things.” P6 remarked that types help him detect
and avoid design decisions before writing any code, also adding:
“Once you get the types right, the rest of it follows pretty quickly.”
Given the perceived benefits of this type-driven development style,
one might wonder: How are these types constructed “right” in the
first place? Based on the value that these programmers place on
rigorous statically-enforced types, one might get the impression
that they are the result of a purely rational process from which the
rest of the program flows effortlessly. But the reality is quite a bit
messier.

4.1.1 Feeling Odd When Types Are Amiss. At times, participants
reported feeling “very wrong” (P4) or that something felt “weird”
(P5) or “fishy” (P7) while coding. Ultimately, each time a participant
reporting feeling this way, it could be traced to types they viewed as
unsatisfactory: in all cases, participants either identified particular
discomforting aspects of how they modeled their types, or, after
modifying their types, reported being more at ease. One prominent
trigger for these feelings was data representation redundancy, which
both P7 and P8 explicitly called out as particularly undesirable,
recalling prior examples of this phenomenon that lead to bugs. As
a consequence of this feeling of personal discomfort, participants
were able to diagnose and repair issues with their types as they
constructed them.

4.1.2 Iteratively Constructing Types and Expressions. For many par-
ticipants, type construction was not just a linear (or even branching)
process, but, rather, a cyclical one, often including the construction

of expressions before the types had solidified. For example, partici-
pants wrote example expressions before and during the construction
of their types (P4, P6, P8), basing their decisions of how to structure
their types on how they structured their expressions. More itera-
tively, P7 took a developer-centric viewpoint, noting that although
he first thinks “From a simple/conceptual/ontological kind of level:
How should these types be?” he sometimes realizes “Oh, okay, wow
this is actually way more painful. Like, it felt right to me from just
like a lofty, abstract perspective, but now that I’m getting into the
nitty-gritty . . . ergonomically, it’s too costly.” Figure 1 depicts the
most extreme level of iteration: P8’s handling of a “hard bit” of a
function, which he pithily characterizes as “[Having] the usage
drive the type rather than the type drive the usage.”

4.2 Focusing Techniques

“No, they’re pairs! What am I doing? Yeah, ugh, okay—I’m
trying to do too many things at once. That’s also a pretty
common thing.” (P3)

Part of the challenge of programming—like any complex task—is
managing one’s mental workload, or “the amount of mental work
or effort necessary for a person . . . to complete a task over a given
period of time,” which “is not merely a property of the task, but also
of the individual, and their interaction” [10]. Some of the variance
between individuals’ mental workload for a given task is their ability
to manage their working memory, a “temporary storage system
under attentional control that underpins our capacity for complex
thought” [1, Chapter 1]. Accordingly, to complete complex tasks,
programmers must focus their attention on relevant information,
reducing extraneous mental burden.

Although a more rigorous methodology of mental workload
analysis would be required to determine whether the following
strategies are actually effective, I observed and participants explic-
itly noted a few techniques they used to help themselves focus that
were made possible by the nature of statically-typed functional
programming languages.

4.2.1 Relying on Compiler as Assistant. For many participants,
error messages from their compiler served as an auto-updating to-
do list. The programmer has a transformation in mind and expresses
their intent to complete it by modifying a part of the program. From
there, the compiler presents the programmer with a list of sub-tasks
to complete the transformation—the programmer can just follow
the errors. For example, P1 described the process of modifying a
type:

It broke a lot of stuff, but it was super nice because I made
the change and the type checker told me: “This no longer



CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan Justin Lubin

-- Set (Position, Position)
-- Set (Position, Tile, Maybe Color, Position)
-- Board, Set (Maybe Color, Position)
-- Board

Figure 2: L2 “followed the types” by writing down the types

of each step of moving a board game piece in comments

(shown here), then, afterward, implementing each one se-

quentially.

type checks; here’s all the places where it goes wrong.” And
I can just go through and fix all the type errors, and that
essentially is doing the change.

L4 demonstrated the extent to which compiler errors are integral
to the development process, noting, in the absence of negative feed-
back from the compiler, “I’m a little troubled because . . . I expect the
compiler to get mad at me right now, and it’s not getting mad at me,
and that makes me nervous.” P1 echoed this sentiment, noting his
discomfort at situations in which the compiler cannot give negative
feedback: “Lifting an auxiliary function like that can be fraught,
because sometimes the auxiliary function and the original function
have the same type . . . and this is not necessarily something the
type checker can fix for you.” Participants felt similarly about the
use of wildcards in pattern matching, which silently assign pre-
existing behavior to new variants of an enumeration. P7 mentioned
that, in his main codebase, wildcards are completely disallowed for
this reason, even though they make programming more convenient.

An interesting source of variation between participants was in
what order they completed the sub-tasks set forth by “following the
errors.” Mostly, participants completed semantics-preserving refac-
tors to get their code into a clean, working state before introducing
new or different semantics—but that was not always the case. For
example, when adding a possibly-failing division operation to his
calculator, P8 simultaneously made his function return a Result2
and implemented new functionality before refactoring other parts
of the function to handle the new possible errors. He noted that
he did so because he knew exactly how the result handling would
work for the division case, but not for the other cases. Similarly,
P7 added new semantics to a function first as a lightweight way to
make sure his type modifications would work out, thereby avoiding
committing to an arduous sequence of refactors too early.

4.2.2 Type-Directed Top-Down Decomposition. Participants fre-
quently used types to structure their top-down decomposition of
problems, a strategy many participants referred to as following the
types. L2 exemplified this pattern by writing down the types of each
step of a desired algorithm, then later filling in their implementa-
tions (Figure 2). P8 took a related approach when implementing a
string manipulation function: he knew he needed to use the higher-
order library function List.indexedMap, but was unsure how to
implement the function to pass into it, so he copied and pasted the
type signature from the documentation into his code and imple-
mented the function top-down from the signature. P7 stressed the
importance of this general strategy in maintaining his focus:

2A Result indicates a possible failure that must be explicitly handled; it is a type-safe
way of making a function partial.

I find types really help me just organize . . . it’s very im-
portant for me to be able to just chunk different parts of
functionality, and . . . once I’ve gotten down the type signa-
ture, I can just focus on this function and not think about
really anything outside of it.

Similarly, P3 highlighted that constructing expressions top-down
from the type lets him think more clearly about sub-tasks: “Just
like, actually typing this out, and sitting here, kinda freed my brain
of this outer context.”

4.3 Hierarchical and Opportunistic

Programming

Participants primarily engaged in hierarchical programming by “fol-
lowing the types” (Section 4.2.2); the opportunistic deviations from
this pattern, however, were far more varied. These opportunistic
strategies often complemented the hierarchical ones harmoniously,
with participants frequently and fluidly switching between the
two. Guindon observed this harmony in the context of software
design [5]; I here describe it in that of statically-typed functional
programming.

4.3.1 Opportunistic Strategies. When programming opportunisti-
cally, participants engaged in strategies such as:

Using the top level of their file as a blank canvas to sketch code.
L1 directly coded a draft of a function at the top level of the file
then used it as a reference for a more robust function later. P4 took
a similar approach, implementing his calculator function first as a
pattern match at the top level and later wrapping it in a function.
L4 took a more lightweight approach, using a sketch at the top level
only to query complicated type information from the compiler.

Constructing expressions bottom-up. Participants sometimes con-
structed expressions by iteratively wrapping expressions with more
complex structures. In the example above, L1 first implemented
the function’s core logic in a do block, then wrapped the entire
expression in a function called loopwhen it called for recursion (as
did P4 for his calculator). Similarly, after implementing a function’s
core logic, P5 wrapped it in a case expression that handled errors.

Another common way to build expressions bottom-up was to
iteratively construct a “pipeline” (i.e., composition) of functions,
especially when the types were concrete. For example, L1 built up
a string processing pipeline one function at a time, testing each
iteration in the REPL. (P7, P8, and L5 did similarly but without a
REPL.)

Performing pattern-matching to handle sub-cases independently.
When dealing with abstract types with many existing combinators,
participants often introduced pattern matches that would be unnec-
essary with the use of more idiomatic combinators, but that allowed
them to visually examine and handle sub-cases independently. P8
noted an explicit case expression is helpful in these cases because
“It’s telling me, here’s all the possibilities, just handle them.”

4.3.2 Interplay of Hierarchical and Opportunistic Programming.
The above opportunistic strategies were often used in concert with
hierarchical strategies. P3 uses both these types of strategies, writ-
ing code that meets in the middle:



How Statically-Typed Functional Programmers Author Code CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan

I kind of understand, maybe, what I’ve got, so I can do some
bottom-up exploration. And I pretty much know where I
want to be (which is the type signatures), and it allows me
to do some top-down programming. And when it’s not clear
to me how to connect the two, and . . . I’m not feeling super
productive or I feel stuck trying to think from one end, I just
switch to the other to try to glean some more context.

Although many participants stressed the value of “following the
types,” sometimes the rigid workflow it entails made it hard for
them to overcome indecision. For example, P7 remarked:

Maybe I already spent a lot of time trying to think about how
to do it the right way just in my head and I’m not getting
anywhere. Then, at that point, I’m just going to be like, okay,
it’s time to push through and suppress my perfectionist
tendencies of stripping away all redundant things.

When “just pushing through”, participants often equivocated be-
tween multiple expressions with similar (or identical) semantics,
trying to settle on the most ergonomic one for the task at hand.
This mentality also manifests in the pattern of writing code not
as a final goal, but as a process of clarification: P3 highlighted the
importance of planning in his coding process, but also includes
pushing through with “exploratory” code in the planning phase.
P8 commonly exhibits this behavior by starting with many pattern
matches (as in Section 4.3.1) then transitioning the code to a more
streamlined form in a bottom-up fashion once it is functional and
its patterns are more easily recognizable. He noted that once the
case expressions are written down, “You can start at the deepest
level and sort of streamline them.”

4.4 Mental Models and Expressing Intent

Participants had highly diverse mental models, and, although partic-
ipants relied heavily on their compilers (Section 4.2.1), they did not
always conceptualize their code the same way that their compilers
processed it.

4.4.1 Diversity of Mental Models. Mental models differed signifi-
cantly, even within the same programmer. For example, P8 intro-
duced local, argument-passing state to his calculator to implement
history, but mentioned that he would handle the task completely
differently in a model-view-controller architecture (which he al-
most always uses while programming in Elm). For the same task,
P5 did not even consider a mutable reference, whereas P1 wanted
to use one immediately (but ultimately settled on explicit state
passing). P4 initially conceptualized the history as a specialized
binding context, but decided to use a mutable reference for ease of
implementation (which he felt to be unsatisfactory).

This diversity hints at the trade-off betweenwhat feels (1) natural,
(2) easy, and (3) right. Mutable references were easy yet felt wrong
to P1 and P4 in the above paragraph, but were natural to P1 and
not to P4. As another example, P3 was working in a context that
required an integer, but he realized that the computation might fail;
his initial reaction was simply to use −1 to signal failure, but he
could not bring himself to do so. (It felt natural and easy, but not
right.)

4.4.2 Reasoning about Code Essence. Compilers treat programs
as formal objects, but programmers participants often engaged in
authoring patterns that demonstrated reasoning about higher-level

meaning. Frequently, these patterns did not result in valid code;
nonetheless, they were a helpful for participants to concretize and
refine their intent.

Conflating a value with its image under a function. Multiple par-
ticipants identified values in their problem domain with different
representations of the same concept, leading to formally invalid but
not implausible code. For example, when checking for a division by
zero in their calculator, P3, P5, and P8 first checked if the right-hand
side of the division was equal to the integer literal 0, even though
it was actually an expression in their grammar.

Checking only for patterns of interest. Participants often used
pattern matching to handle one specific case, using a wildcard to
discard all others. (Including each case handled by the wildcard
would increase the size of the constructed expression dramatically,
especially when matching on tuples or using nested patterns.) For
example, when working with pairs of computations that might
fail, both P1 and P5 immediately introduced a pattern-matching
expression and handled the “success” case first, only adding the
error handling afterward (using a wildcard as a catch-all).

Although wildcards are helpful in that they reduce the atten-
tion needed for error branches, this feature is in direct tension
with participants’ desires for the compiler to act as an assistant; as
mentioned in Section 4.2.1, wildcards prevent the compiler from
statically checking that new variants are handled correctly. P1 sum-
marized this issue:

I have some code where I have a bunch of cases, and then I
think I’m at the end . . . and then I wildcard the last pattern
. . . then I add a new variant to the type, and then suddenly I
compile with no errors, but then whenever I use that new
constructor, it falls off the end of the function.

Reasoning purely despite effects. Both L1 and L5 used map to ap-
ply a function to a list, but subsequently realized that the iteration
needed to stop early, rewriting the code to handle the “effect” of
early termination. L1 reasoned intuitively about an “infinite compo-
sition” of a function of type Maybe ETag → IO (ETag, [Pull]),
then had to figure out what this “composition” looked like with
effects.

4.4.3 Signaling and Executing Intent. Participants often had high-
level patterns in mind that they needed to translate into executable
code. In doing so, there were many details that they needed to
work out: some low-level and systematic, and others high-level and
involved. For example, reflecting on his process of adding history
to his calculator, P1 noted:

I had a pretty good idea of what I was going to do. The
main question was just: How do I represent the state? It
seemed pretty clear that the pattern was going to be: thread
some state around . . . then essentially . . . add a case to the
evaluator where, when you hit this case, you dereference
the cell and grab the data.

For this task, P2 noted that the type system made him “think, at
each layer, who needs to have access to the state and who needs
to update it.” These high-level plans entail many low-level edit
actions (e.g., introducing parameters and updating call sites), but
participants initially expressed their intent here via modifications
to type signatures.



CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan Justin Lubin

Sometimes, participants noted that the type system was not
expressive enough to capture their intent, mostly when trying to
“make illegal states unrepresentable.” In such cases, participants
signaled their intent that certain states should be illegal by pattern-
matching and asserting False (P3), throwing an exception (P4), or
returning a Result type (P5).

5 LIMITATIONS

Two immediate limitations to this study are (1) its small sample
size and (2) the fact that it is purely qualitative. Future work should
extend the theory with input from more participants and should
test the predictive power of the theory. More fundamentally, asking
participants to design and think aloud can overload their working
memory [3]; these sessions could thus be skewed toward oppor-
tunistic behavior (although such working memory overload may
also be common in a working environment). Another limitation of
this study particularly relevant for tool designers is that it captures
how statically-typed functional programmers author code in their
current environments and languages—not necessarily what they
would do “naturally.” A natural-programming elicitation [7] study
with expert statically-typed functional programmers would serve
as an interesting comparison of an “ideal” world to the world as it
is now.

6 CONCLUSION

This study deepens our understanding of how statically-typed
functional programmers author code. Future work could build on
this knowledge to design evidence-based tools that leverage exist-
ing program authoring patterns. For example, a tool cognizant of
how statically-typed functional programmers specify intent (Sec-
tion 4.4.3) could leverage familiar task decomposition strategies
(Section 4.2.2) to serve as a better programmer’s assistant than
standard compiler error messages. Or a tool could support the ex-
pressiveness of wildcard patterns (Section 4.4.2) while instilling
the confidence of compiler feedback (Section 4.2.1) by informing
programmers of matching wildcards when they introduce new
enumeration variants and using program synthesis to provide sug-
gestions. These insights suggest that this same methodology could
be applied to other programming audiences where we currently
lack need-finding analyses, ultimately leading to more accessible
and expressive tooling for understudied communities.

ACKNOWLEDGMENTS

I thank Sarah Chasins for her excellent mentorship and guidance on
this project, and I thank Ravi Chugh for the insightful conversations
that led to the development of the questions in this study. I am also
indebted to the anonymous participants of my study for making
this research possible. This material is based upon work supported
by the National Science Foundation Graduate Research Fellowship
under Grant No. 1752814. Any opinion, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

[1] Alan Baddeley. 2007. Working Memory, Thought, and Action. https://doi.org/10.
1093/acprof:oso/9780198528012.001.0001

[2] Kent Beck, Ron Crocker, Gerard Meszaros, John Vlissides, James O. Coplien,
Lutz Dominick, and Frances Paulisch. 1996. Industrial Experience with Design
Patterns. In International Conference on Software Engineering (ICSE). https:
//doi.org/10.1109/ICSE.1996.493406

[3] Simon P. Davies and AdrianM. Castell. 1994. From Individuals to Groups Through
Artifacts: The Changing Semantics of Design in Software Development. In User-
Centred Requirements for Software Engineering Environments (NATO ASI), David J.
Gilmore, Russel L. Winder, and Françoise Détienne (Eds.). https://doi.org/10.
1007/978-3-662-03035-6_2

[4] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, and Grady Booch.
1995. Design Patterns: Elements of Reusable Object-Oriented Software.

[5] Raymonde Guindon. 1990. Designing the Design Process: Exploiting Opportunis-
tic Thoughts. Human–Computer Interaction 5 (1990). https://doi.org/10.1080/
07370024.1990.9667157

[6] Michael Muller. 2014. Curiosity, Creativity, and Surprise as Analytic Tools:
Grounded Theory Method. In Ways of Knowing in HCI, Judith S. Olson and
Wendy A. Kellogg (Eds.). 25–48. https://doi.org/10.1007/978-1-4939-0378-8_2

[7] Brad A. Myers, Amy J. Ko, Thomas D. LaToza, and YoungSeok Yoon. 2016. Pro-
grammers Are Users Too: Human-CenteredMethods for Improving Programming
Tools. Computer 49 (2016). https://doi.org/10.1109/MC.2016.200

[8] Brad A. Myers, John F. Pane, and Amy Ko. 2004. Natural Programming Languages
and Environments. Commun. ACM 47 (2004). https://doi.org/10.1145/1015864.
1015888

[9] Simon Thompson. 2004. Refactoring Functional Programs. InAdvanced Functional
Programming (AFP). https://doi.org/10.1007/11546382_9

[10] Bin Xie and Gavriel Salvendy. 2000. Review and reappraisal of modelling and
predicting mental workload in single- and multi-task environments. Work &
Stress 14 (2000). https://doi.org/10.1080/026783700417249

https://doi.org/10.1093/acprof:oso/9780198528012.001.0001
https://doi.org/10.1093/acprof:oso/9780198528012.001.0001
https://doi.org/10.1109/ICSE.1996.493406
https://doi.org/10.1109/ICSE.1996.493406
https://doi.org/10.1007/978-3-662-03035-6_2
https://doi.org/10.1007/978-3-662-03035-6_2
https://doi.org/10.1080/07370024.1990.9667157
https://doi.org/10.1080/07370024.1990.9667157
https://doi.org/10.1007/978-1-4939-0378-8_2
https://doi.org/10.1109/MC.2016.200
https://doi.org/10.1145/1015864.1015888
https://doi.org/10.1145/1015864.1015888
https://doi.org/10.1007/11546382_9
https://doi.org/10.1080/026783700417249

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	4 Results
	4.1 Type Construction
	4.2 Focusing Techniques
	4.3 Hierarchical and Opportunistic Programming
	4.4 Mental Models and Expressing Intent

	5 Limitations
	6 Conclusion
	Acknowledgments
	References

