
Fast Direct Manipulation Programming with
Patch-Reconciliation Correspondence
PARKER ZIEGLER, University of California, Berkeley, USA

JUSTIN LUBIN, University of California, Berkeley, USA

SARAH E. CHASINS, University of California, Berkeley, USA

Direct manipulation programming gives users a way to write programs without directly writing code, by

using the familiar GUI-style interactions they know from direct manipulation interfaces. To date, direct

manipulation programming systems have relied on two core components: (1) a patch component, which

modifies the program based on a GUI interaction, and (2) a forward evaluator, which executes the modified

program to produce an updated program output. This architecture has worked for developing short-running

programs—i.e., programs that reliably execute in <1 second—generating outputs such as SVG and HTML

documents. However, direct manipulation programming has not yet been applied to long-running programs

(e.g., data visualization, mapping), perhaps because executing such programs in response to every GUI

interaction would mean crossing outside of interactive speeds. We propose extending direct manipulation

programming to long-running programs by pairing a standard patch component (patch) with a corresponding

reconciliation component (recon). recon directly updates the program output in response to a GUI interaction,

obviating the need for forward evaluation.

We introduce corresponding patch and recon procedures for the domain of geospatial data visualization

and prove them sound—that is, we show that the output produced by recon is identical to the output produced
by forward-evaluating a patch-modified program. recon can operate both incrementally and in parallel with

patch. Our implementation of our patch-recon instantiation achieves a 2.92× median reduction in interface

latency compared to forward evaluation on a suite of real-world geospatial visualization tasks. Looking

forward, our results suggest that patch-reconciliation correspondence offers a promising pathway for extending

direct manipulation programming to domains involving large-scale computation.

CCS Concepts: •Human-centered computing→ User interface programming; • Software and its engi-
neering→ Graphical user interface languages; Integrated and visual development environments.

Additional Key Words and Phrases: direct manipulation, direct manipulation programming, reconciliation,

patch-reconciliation correspondence, cartokit, geospatial data

ACM Reference Format:
Parker Ziegler, Justin Lubin, and Sarah E. Chasins. 2025. Fast Direct Manipulation Programming with Patch-

Reconciliation Correspondence. Proc. ACM Program. Lang. 9, PLDI, Article 175 (June 2025), 26 pages. https:
//doi.org/10.1145/3729278

1 Introduction
Direct manipulation programming systems integrate the point-click-modify interactions of graphi-

cal user interfaces (GUIs) with the flexibility and expressiveness of programming. Typically con-

trasted with command-line interfaces, direct manipulation interfaces [57] let users “act on displayed

objects of interest using physical, incremental, and reversible actions whose effects are immediately

Authors’ Contact Information: Parker Ziegler, peziegler@cs.berkeley.edu, University of California, Berkeley, Berkeley,

California, USA; Justin Lubin, justinlubin@berkeley.edu, University of California, Berkeley, Berkeley, California, USA; Sarah

E. Chasins, schasins@cs.berkeley.edu, University of California, Berkeley, Berkeley, California, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/6-ART175

https://doi.org/10.1145/3729278

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

HTTPS://ORCID.ORG/0000-0001-9462-2123
HTTPS://ORCID.ORG/0000-0003-2311-1873
HTTPS://ORCID.ORG/0000-0003-0557-3580
https://doi.org/10.1145/3729278
https://doi.org/10.1145/3729278
https://orcid.org/0000-0001-9462-2123
https://orcid.org/0000-0003-2311-1873
https://orcid.org/0000-0003-0557-3580
https://orcid.org/0000-0003-0557-3580
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729278
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

175:2 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

visible on the screen [56].” In the context of programming, direct manipulation typically means

displaying an always-visible program and an always-visible program output. In addition to textual

edits, the programmer can interact with graphical interface elements (e.g., menus, buttons, drop-

downs, color pickers). As in other direct manipulation settings, the effects of these interactions

should be “immediately visible on the screen.” In contrast to non-programming settings, this means

the user should see effects on two artifacts: the program and the program output.

A key challenge in the design of direct manipulation programming systems is the synchro-

nization of program and output, often formalized as a “round-tripping” property [22]. Several

existing systems (e.g., Sketch-n-Sketch [38], BiOOP [64]) maintain program-output synchrony via a

bidirectional semantics, which introduces a backward evaluation relation defining how GUI actions

propagate to the source program. Synchrony is preserved by subsequently forward-evaluating the

updated program to produce the updated output. Implicit in this architecture is the assumption

that this loop—backward evaluation followed by forward evaluation—is fast enough to maintain

interactive speeds in a GUI.

While this assumption may hold for the domains these systems have explored to date (SVG

[14, 29, 30], HTML documents [38, 64]), some tasks are longer-running—e.g., tasks involving large-

scale computation over data. Forward evaluation in these contexts can be extremely expensive.

Consider, for example, a simple program for rendering a data visualization such as a scatterplot

or choropleth map. If a programmer manipulates display attributes of the visualization’s marks,

such as the color scheme or stroke width, forward evaluation will involve re-parsing and storing

the underlying data in memory, re-computing scales to map data points to onscreen values, and

re-drawing graphical marks. If the data happens to be stored remotely in a database or at an API

endpoint, forward evaluation introduces the additional penalty of re-fetching over the network on

every execution. If a given GUI action only affects a small subset of the data, forward evaluation

will waste resources re-rendering many unaffected marks.

Given these challenges, we ask: How can we avoid the performance cost of forward evaluation
while ensuring that the program and output remain in agreement? This paper aims to present

an answer in the form of patch-reconciliation correspondence, a strategy for supporting direct

manipulation programming that avoids forward-evaluating the updated program in response to

every direct manipulation interaction. We instantiate patch-reconciliation correspondence in a

direct manipulation programming system for data-intensive geospatial visualization.

Key Insight. Forward evaluation is a sensible synchronization mechanism because it guaran-

tees exact program-output correspondence by construction. In lieu of running sophisticated and

computationally expensive program analyses to check this property, we can assure it by simply

evaluating the program. The problem, however, is that forward evaluation is too coarse; for a given

output modification, it may repeat a lot of work that is not needed for synchronization. In fact,

many output modifications can be distilled into very small transformations on the current program

output. We introduce an approach for implementing a direct manipulation programming system by

combining (1) a standard patch process for updating a program with (2) a reconciliation (recon)
process for updating a program output. Importantly, we use patch and recon not only to prove

our system sound, but also to implement our instantiation. By showing that patch and recon are
conjugate—that is, that patching and then evaluating a program produces the same value as directly

reconciling the program output—we eliminate the need for forward evaluation altogether; instead,

we can rely exclusively on parallel applications of patch and recon.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:3

Fig. 1. Comparing direct manipulation programming approaches. In systems that use Forward
Evaluation (including all prior direct manipulation programming systems), (A) a GUI interaction triggers
a program update, (B) a patch function (e.g., backwards evaluation [38], fusion [66]) applies a synthesized
program transformation to the program, and (C) the system forward-evaluates the program to produce
the updated output. In contrast, our system uses a patch-recon approach, in which (A) a GUI interaction
dispatches a diff (𝛿) and (B) patch and recon operate in parallel on this same diff. patch generates an
updated program while recon generates a corresponding updated output. Proving correspondence between
patch and recon is key to enabling this approach.

Contributions. This paper contributes:

(1) A strategy for program-output synchronization in direct manipulation programming systems,

patch-reconciliation correspondence, that obviates the need for forward evaluation (Section 3).

(2) An instantiation of reconciliation (recon) for the domain of data-intensive geospatial visual-

ization (Section 4). We prove reconciliation sound and demonstrate its equivalence to patch
followed by forward evaluation.

(3) An implementation of this instantiation, and an evaluation on (1) the 80 reconciliation events

required to reproduce six real-world maps published by national newsrooms, and (2) organic,

in situ use of the system over a 30-day period (Section 6). Performance evaluation reveals that

our patch-reconciliation approach can offer performance benefits for direct manipulation

programming; we observed a 2.92× median reduction in interface latency and a 28.06×
median speedup on code execution time compared to forward evaluation.

2 Overview
To demonstrate the key ideas of our patch-reconciliation approach (hereafter patch-recon) and
its effect on performance in a direct manipulation programming system, we consider a concrete

geospatial visualization example. Note this is just one instantiation of the technique; we show

in Section 7.1 that patch-recon applies to direct manipulation programming systems targeting

general-purpose programming languages, including those built on the 𝜆-calculus with general

recursion.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:4 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

For now, suppose we are programming a scrollable, zoomable map showing wildfires in the

United States using data from the National Interagency Fire Center’s API
1
. We want the map to

reveal where fires occurred (by county), the acreage each fire burned, and the fire’s root cause

(e.g., human activity, natural occurrence). We will assume that we are working within a direct

manipulation environment in which a series of layers are placed atop a base map layer in order to

create a visualization, as is standard for geospatial analyses.

patch and recon. To begin our exploration of patch and recon, we focus on a single interaction

in our direct manipulation programming process. To set the stage, suppose the direct manipulation

system has already fetched the geospatial data for wildfire perimeters and county boundaries in the

United States. Suppose further that we have already added two visual layers to the output map in

our system: (1) a layer of polygons whose boundaries are defined by the data for recorded wildfires

and (2) a layer of polygons whose boundaries are defined by the data for U.S. counties.

Now we perform a GUI interaction to transform the wildfires layer into a proportional symbol
layer. Rather than rendering polygons that represent the extent of each wildfire, a proportional

symbol layer renders circles positioned at the geographic center of each wildfire; the size of the circle

is proportional to the total acreage burned. (The bottom-right map of Figure 2 shows an example of

a proportional symbol layer.) Executing this transformation is complex and expensive; the system

needs to (1) iterate over all wildfire polygons in the dataset, (2) compute their geographic centers,

(3) compute a scale function mapping the acreage_burned property to circle sizes, (4) evaluate

that scale on all wildfires in the dataset, and (5) render the resulting marks to the screen.

Under patch-recon, this GUI interaction triggers two parallel operations:

(1) The patch operation applies a small program transformation, which we call a diff, to the

system’s current program. In our example, this involves generating—though not executing—

the code for steps 1 through 5 above.

(2) The recon operation interprets this same diff and applies its effects to the output map. In

our example, this involves computing steps 1 through 5 above.

It is critical to note that although these operations share a correspondence—patch updates the

program while recon models the effect of that update on the output—they execute independently.
Compare this to forward evaluation, in which the system must wait for patch to perform the

program update before evaluating it to a new output map. Figure 2 provides an illustrated example

of patch-recon for this interaction.

Beyond parallelization, patch-recon carries additional benefits in this scenario. Because the

wildfires data is already stored in memory, the computation to transform the polygon layer to

a proportional symbol layer can begin immediately without re-fetching data from the API. Ad-

ditionally, because the computation only affects the wildfires layer, the system does not need to

modify the program representation or rendered marks of the counties layer. Compare this again to

forward evaluation, in which the system would re-fetch, re-parse, and reload the wildfires dataset

from its API endpoint. Additionally, because forward evaluation does not reuse results from prior

executions, the system must re-render the unmodified counties layer. This carries a separate cost

of re-fetching, re-parsing, and reloading the counties data, in addition to re-instantiating the map.

This interaction alone demonstrates the core problem that reconciliation addresses. As we

continue to make small output modifications (e.g., mapping the color of each circle to the dataset’s

cause property, reducing opacity to increase the visibility of overlapping circles), forward evaluation
repeats all prior computation. Moreover, program update and program evaluation must always

occur sequentially. In contrast, patch-recon operates incrementally and in parallel. Each new

1
https://data-nifc.opendata.arcgis.com/

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

https://data-nifc.opendata.arcgis.com/

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:5

Fig. 2. Our patch-recon approach applied to a geospatial visualization example. (A) A GUI interaction
triggers (1) the patch operation, supplying a diff and our program, 𝑃 , as inputs, and (2) the recon operation,
supplying the same diff and our map, 𝑉 , as inputs. (B) patch applies the diff to produce the updated
program, 𝑃 ′, while recon interprets the diff to produce the updated map, 𝑉 ′. The program is never forward
evaluated to produce the updated map, which visualizes wildfires using a proportional symbol layer.

output modification produces only a small diff from the prior program, and the patch and recon
functions operate on this shared diff to synchronize the program and output, respectively.

Why not cache data? If data fetching, parsing, and storage is a primary bottleneck for forward

evaluation of data-intensive programs, why not just cache the data? Indeed, as described in the

example above, caching data in memory is a key factor in making our reconciliation implementation

efficient. However, while this strategy would amortize the costs of data access, it would not eliminate

all redundant computation performed by forward evaluation. To see why, let us extend our example

above to a second GUI interaction.

Let us say the programmer performs a GUI interaction to map each circle’s color to its correspond-

ing wildfire’s cause property, allowing them to identify which wildfires were human-caused versus

naturally occurring. With caching in place, forward evaluation could skip re-fetching and re-parsing

the data; however, we would still incur the cost of translating cached data into an efficient data

structure for rendering. In our setting, this process—known as tiling—can be extremely expensive,

particularly in a resource-constrained environment like a web browser. Worse yet, we pay the

penalty for tiling on both the wildfires layer and the counties layer, even though the latter did not

change as part of the output update. In contrast, reconciliation can sidestep tiling by modifying

rendered marks in place, scoping the modification to the wildfires layer. This technique involves

altering and re-running only the shader function that styles marks, which is comparatively cheap.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:6 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

If caching at the data level is not sufficient, we may be tempted to lower our caching approach to

an even finer granularity, such as the layer or mark level. In fact, this is one way of viewing what

reconciliation does! As a system developer adds more caching, they essentially start implementing

reconciliation in an ad hoc manner. The drawback of an ad hoc caching approach, however, is the

lack of a soundness guarantee, which is a core contribution of this work. For a deeper discussion of

how a patch-recon approach differs from traditional caching approaches, see Section 7.4.

patch-recon Correspondence. Prior direct manipulation programming systems have relied on

forward evaluation to guarantee program-output agreement by construction. Since a language

implementation is already available, reusing this machinery is a straightforward choice. But when

forward evaluation is too expensive to achieve interactive speeds, we need some other mechanism to

synchronize the program and output. We propose the pairing of patch and recon as an alternative

strategy to achieve program-output agreement without the associated performance cost.

The key to our approach is a proof of the correspondence between these two functions, which we

formalize in a soundness theorem (Sections 3 and 4). Absent soundness, we have no guarantee that

the effects of recon on the output are captured by the effects of patch on the program, and vice versa.

In this context, every GUI interaction would have the potential to lead to divergence of the program

and output. Consider our working example above. Imagine that the transition to a proportional

symbol layer succeeds on the recon side, but patch applies an incorrect corresponding program

transformation. If we attempted to execute the generated program, we would get either a different

output map or, in a pathological case, a runtime error. As we continue to make modifications within

the system, the problem would only compound. For example, because patchwould apply successive
program updates assuming the transition was already encoded in the program, it could introduce

code that modifies non-existent layer properties, performs impossible data transformations, or tries

to execute a myriad of other degenerate actions. As we will see in the next section, the solution to

these problems is soundness, which guarantees that the output produced by recon is identical to
the output produced by forward evaluating the patched program.

3 Problem Statement
In this section, we formalize the constraints on the reconciliation function and establish the

foundations for soundness.

Definition 3.1. For purposes, a language L has:

(1) A set of programs ProgL .
(2) A set of values ValL .
(3) A semantics eval : ProgL → ValL .
(4) A set of diffs DiffL .
(5) A syntactic diffing operation patch : DiffsL × ProgL → ProgL .

We omit the L subscript when clear from context.

Definition 3.2 (Problem Statement). A reconciliation function is a function

recon : Diff × Val → Val

such that, for any diff 𝛿 ,

eval(patch(𝛿, 𝑃)) = recon(𝛿, eval(𝑃)) .

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:7

Graphically, the following square must commute.

𝑃 𝑃 ′

𝑉 𝑉 ′

patch(𝛿, ·)

eval eval

recon(𝛿, ·)

4 Reconciliation for Direct Manipulation Programming
We now instantiate our problem statement in the context of geospatial visualization. In addition to

our discussion of how patch-recon can apply to general-purpose programming languages with

recursion (Section 7.1), we will also later discuss how this particular instantiation is representative

of many existing languages for tasks that are amenable to direct manipulation (Section 7.2).

4.1 Syntax, Semantics, and Patches
In the following sections, we define the syntax and semantics of language L𝑐𝑘 as well as a notion

of patches, following the structure of Definition 3.1.

Programs. Figure 3 defines the set of programs, ProgL𝑐𝑘
, in the language. Intuitively, a program

𝑝 ∈ ProgL𝑐𝑘
comprises a dictionary of map layer definitions.

Values. The set of values, ValL𝑐𝑘
, in the language is the set of maps, as defined in Figure 3. A

map𝑀 comprises a set of graphicalmarks. Each mark represents a graphical depiction of a single

data point in a dataset and consists of a mark type (mt), associated layer id, associated datapoint,

and associated mapping of channels (attributes like fill-color or stroke-width) to functions that

render these channels.

Semantics. Programs in our language L𝑐𝑘 are dictionaries of map layer definitions; thus, to

introduce the semantics eval of our language L𝑐𝑘 , we first define layer evaluation evalLayer
(Figure 4, left). Intuitively, layer evaluation takes a layer ℓ ∈ 𝑃 and evaluates it to a set of rendered

marks. As part of this process, a function, getMT, interprets a layer’s type, 𝑇 , and returns the

corresponding mark type, mt, for the set of rendered marks. We can then define map evaluation

eval (Figure 4, right), which evaluates all layers to the set of all marks.

Full program evaluation is quite expensive in our context. Given the large sizes of geospatial

datasets (typically 10–500 MB, consisting of tens of thousands to hundreds of thousands of features),

the geometric complexity of rendered marks in a layer, and the linear time complexity of evaluation

with respect to the number of data points across all layers, avoiding full program evaluation where

possible is critical for performance.

Diffs. Our definition of diffs 𝛿L𝑐𝑘
is included in Figure 3. We briefly describe each diff below.

(1) setChannel(id,𝐶, fn) includes a layer id, a channel (𝐶) to add or modify on the associated

layer’s style (𝑆) and a function (fn) mapping each datum (d) in the layer to a stylistic value

for the supplied channel.

(2) removeChannel(id,𝐶) includes a layer id and a channel (𝐶) to remove from the associated

layer’s style (𝑆).

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:8 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

Prog 𝑃 ::= {id ↦→ ℓ}
Layers ℓ ::= ⟨type : 𝑇, data : 𝐷, style : 𝑆⟩

Layer Types 𝑇 ::= Point | Line | Polygon | Choropleth | Proportional Symbol | Dot Density
Data 𝐷 ::= [d𝑖 , . . . , d𝑁]𝑁 ≥1

Channel 𝐶 ::= fill-color | stroke-width | thresholds | classifier | min-radius | dot-value | . . .
Style 𝑆 ::= {𝐶 ↦→ fn}

Maps𝑀 ::= {𝑚1, . . . ,𝑚𝑁 }𝑁 ≥0

Mark𝑚 ::= mark(mt, id, d, 𝑆)
Mark type mt ::= Point | Line | Polygon

Diff 𝛿 ::= setChannel(id,𝐶, fn)
| removeChannel(id,𝐶)
| addLayer(id, ℓ)
| removeLayer(id)
| transformLayer(id, transform)

Fig. 3. The definition of programs in L𝑐𝑘 . d refers to an individual datum within a layer. id refers to a
layer’s unique string identifier. fn is an abstract function that takes a layer datum d as input and returns a
corresponding stylistic value for a given channel.

Eval-Layer

mt = getMT(𝑇)
evalLayer(id, ⟨𝑇, 𝐷, 𝑆⟩) = {mark(mt, id, d, 𝑆) | d ∈ 𝐷}

Eval-Map

eval(𝑃) =
⋃
id∈𝑃

evalLayer(id, 𝑃 [id])

Fig. 4. Forward evaluation for L𝑐𝑘 .

(3) addLayer(id, ℓ) includes a fresh layer id and a fresh layer definition (ℓ).

(4) removeLayer(id) includes an existing layer id to use for targeted layer removal.

(5) transformLayer(id, transform) includes a layer id and a transform function (⟨𝑇, 𝐷, 𝑆⟩ →
⟨𝑇 ′, 𝐷 ′, 𝑆 ′⟩) to apply to the associated layer. transform operates in practice by mapping a

subroutine, transform1 : ⟨𝑇, d, 𝑆⟩ → ⟨𝑇 ′, d′, 𝑆 ′⟩, over all d ∈ 𝐷 .

Our formalism assumes a validity constraint on diffs, namely that (1) id is guaranteed to exist

in 𝑃 for setChannel, removeChannel, removeLayer, and transformLayer and (2) id is guaranteed to

not exist in 𝑃 for addLayer. Our implementation (Section 5) enforces this constraint.

Patch. The patchL𝑐𝑘
function applies a diff 𝛿L𝑐𝑘

to an existing 𝑝 ∈ ProgL𝑐𝑘
to yield a new

𝑝′ ∈ ProgL𝑐𝑘
. Intuitively, patch modifies the minimal portion of the program AST based on the

value of the diff 𝛿 . We define patchL𝑐𝑘
in Figure 5.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:9

Patch/Set-Channel

𝑃 (id) = ⟨𝑇, 𝐷, 𝑆⟩
patch(setChannel(id,𝐶, fn), 𝑃) = [id ↦→ ⟨𝑇, 𝐷, [𝐶 ↦→ fn]𝑆⟩]𝑃

Patch/Remove-Channel

𝑃 (id) = ⟨𝑇, 𝐷, 𝑆⟩
patch(removeChannel(id,𝐶), 𝑃) = [id ↦→ ⟨𝑇, 𝐷, 𝑆 \ {𝐶}⟩]𝑃

Patch/Add-Layer

patch(addLayer(id, ⟨𝑇, 𝐷, 𝑆⟩), 𝑃) = [id ↦→ ⟨𝑇, 𝐷, 𝑆⟩]𝑃

Patch/Remove-Layer

patch(removeLayer(id), 𝑃) = 𝑃 \ {id}

Patch/Transform-Layer

𝑃 (id) = ⟨𝑇, 𝐷, 𝑆⟩
transform(𝑇, 𝐷, 𝑆) = ⟨𝑇 ′, 𝐷′, 𝑆′⟩

patch(transformLayer(id, transform), 𝑃) = [id ↦→ ⟨𝑇 ′, 𝐷′, 𝑆′⟩]𝑃

Fig. 5. Our implementation of patch for L𝑐𝑘 , a syntactic program update.

Recon/Set-Channel

𝑀′ = {mark(mt, id, d, [𝐶 ↦→ fn]𝑆) | mark(mt, id, d, 𝑆) ∈ 𝑀}
𝑀′′ = {mark(mt, id′, d, 𝑆) | mark(mt, id′, d, 𝑆) ∈ 𝑀, id′ ≠ id}

recon(setChannel(id,𝐶, fn), 𝑀) = 𝑀′ ∪𝑀′′

Recon/Remove-Channel

𝑀′ = {mark(mt, id, d, 𝑆 \ {𝐶}) | mark(mt, id, d, 𝑆) ∈ 𝑀}
𝑀′′ = {mark(mt, id′, d, 𝑆) | mark(mt, id′, d, 𝑆) ∈ 𝑀, id′ ≠ id}

recon(removeChannel(id,𝐶), 𝑀) = 𝑀′ ∪𝑀′′

Recon/Add-Layer

evalLayer(ℓ) = 𝑀′

recon(addLayer(ℓ, 𝑀)) = 𝑀 ∪𝑀′

Recon/Remove-Layer

𝑀′ = {mark(mt, id′, d, 𝑆) | mark(mt, id′, d, 𝑆) ∈ 𝑀, id′ ≠ id}
recon(removeLayer(id), 𝑀) = 𝑀′

Recon/Transform-Layer

𝑀′ = {mark(getMT(𝑇 ′), id, d′, 𝑆′) | mark(mt, id, d, 𝑆) ∈ 𝑀, transform1 (getMT−1 (mt), d, 𝑆) = 𝑇 ′, d′, 𝑆′}
𝑀′′ = {mark(mt, id′, d, 𝑆) | mark(mt, id′, d, 𝑆) ∈ 𝑀, id′ ≠ id}

recon(transformLayer(id, transform),𝑚) = 𝑀′ ∪𝑀′′

Fig. 6. Our implementation of recon for L𝑐𝑘 , a semantic value update.

4.2 Reconciliation Function
With our framework in place, we now define our reconciliation function reconL𝑐𝑘

(Figure 6).

reconL𝑐𝑘
applies a diff 𝛿L𝑐𝑘

to an existing 𝑀 ∈ ValL𝑐𝑘
to yield a new 𝑀 ′ ∈ ValL𝑐𝑘

. Intuitively,

recon modifies the minimal number of marks on the map based on the value of the diff 𝛿 .

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:10 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

patch-recon Correspondence by Example. Imagine we have the following program containing

two layers, a Point layer and a Choropleth layer.
2

𝑃 = {id1 ↦→ ⟨Point, 𝐷1, 𝑆1⟩, id2 ↦→ ⟨Choropleth, 𝐷2, 𝑆2⟩}

When evaluated by evalL𝑐𝑘
, this program yields a set of marks:

𝑀 = {mark(Point, id1, d, 𝑆1) | d ∈ 𝐷1} ∪ {mark(Polygon, id2, d, 𝑆2) | d ∈ 𝐷2}

Now, we trigger a GUI interaction to remove the stroke-width channel from just the Point layer.
This produces the following diff:

𝛿 = removeChannel(id1, stroke-width)

patchL𝑐𝑘
and reconL𝑐𝑘

commence operation on this diff in parallel. patchL𝑐𝑘
(instantiated

below) identifies the associated layer, ℓ1, in the program via dictionary lookup and removes the

stroke-width channel from 𝑆1. Notice that the Choropleth layer remains untouched.

Patch/Remove-Channel

𝑃 (id1) = ⟨Point, 𝐷1, 𝑆1⟩
patch(removeChannel(id1, stroke-width), 𝑃) = [id1 ↦→ ⟨Point, 𝐷1, 𝑆1 \ {stroke-width}⟩]𝑃

Meanwhile, reconL𝑐𝑘
(instantiated below) identifies the current set of associated marks by id

({mark(id1, Point, d, 𝑆1) | d ∈ 𝐷1}) and modifies the marks to remove the stroke-width channel.

Notice again that marks associated with the Choropleth layer (id2) remain unchanged.

Recon/Remove-Channel

𝑀 ′ = {mark(Point, id1, d, 𝑆1 \ {stroke-width}) | mark(Point, id1, d, 𝑆1) ∈ 𝑀}
𝑀 ′′ = {mark(Polygon, id2, d, 𝑆2) | mark(Polygon, id2, d, 𝑆2) ∈ 𝑀, id1 ≠ id2}

recon(removeChannel(id1, stroke-width), 𝑀) = 𝑀 ′ ∪𝑀 ′′

The following theorem establishes that the new set of marks produced by reconL𝑐𝑘
—that is, the

new map—is equivalent to the map that would be produced by eval’ing the patch’ed program

(Definition 3.1). For brevity, we provide a proof of this theorem in Appendix A.

Theorem 4.1 (Soundness). reconL𝑐𝑘
is a reconciliation function.

5 Implementation
We implement L𝑐𝑘 , evalL𝑐𝑘

, patchL𝑐𝑘
, and reconL𝑐𝑘

described in Section 4 in a direct manipula-

tion programming environment for geospatial analysis and visualization, cartokit. cartokit is
implemented in 9,526 lines of TypeScript and Svelte, and its source code is publicly available at

https://github.com/parkerziegler/cartokit. A deployment of the cartokit programming environ-

ment is available at https://alpha.cartokit.dev.

Our implementations of patch and recon account for 1,713 lines (≈18%) of the codebase. Much

of this code is devoted to specializing the same core logic for all visualization channels (currently

21) our system supports. In fact, patch-recon for a single diff tends to be quite compact in

our setting. For example, the entirety of patch-recon for updating the point-size channel (i.e.,

𝛿 = setChannel(id, point-size, 𝑛)), is implemented in only 14 lines of TypeScript. A small minority

are much larger. In particular, patch-recon for 𝛿 = transformLayer(id, transform), which handles

advanced cases like the example described in Section 2, constitutes 1,020 of the overall 1,713 lines

(≈59.5%); most of this code implements specific geospatial data transformation algorithms.

2
A choropleth layer associates a geographic region with a color based on the value of a particular data property for that

region. See Figure 7 for an example.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

https://github.com/parkerziegler/cartokit
https://alpha.cartokit.dev

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:11

Fig. 7. An example map from our benchmark suite (left) alongside the cartokit reproduction (right).
This example choropleth map, taken from “Bird populations are declining. Some are in your neighborhood”
published in The Washington Post, shows the change in American Crow abundance across the United States
from 2012-2022. The benchmark workflow associated with this map includes 17 recon-triggering actions.

6 Evaluation
To assess the performance impacts of reconciliation on direct manipulation programming, we

designed our empirical evaluation around two core research questions:

RQ1. How does reconciliation affect performance relative to forward evaluation, if at all?

RQ1a. Does reconciliation result in greater speedups for longer-running computations?

RQ2. How fast is reconciliation when updating real-world outputs with real-world datasets?

We investigated these questions through two studies using our instantiation of the patch-recon
approach in cartokit. In Study 1, we addressed RQ1 and RQ1a by measuring and comparing

reconciliation’s performance against forward evaluation while reproducing six maps published

by two national newsrooms: The Washington Post
3
and The New York Times

4
. In Study 2, we

answered RQ2 by instrumenting cartokit’s production deployment to capture reconciliation’s

run time performance in situ on organic, real-world use.

6.1 Study 1: Comparing Reconciliation vs. Forward Evaluation Performance on Six
Real-World Benchmarks

6.1.1 Benchmark Suite. We selected six maps published by two national newsrooms as targets for

replication using the following criteria:

(1) Data availability. GeoJSON5
data for the map had to be provided, publicly available, or

computable from the data sources listed with the map.

(2) Recency. The map had to have been published after January 1, 2023.

Table 1 includes details of each benchmark map. Figure 7 shows an example of one of our benchmark

maps alongside its reproduction in cartokit.

6.1.2 Setup. We used v0.5.2 of cartokit to reproduce eachmap in our benchmark suite, generating

one workflow per map. Each workflow is composed of a sequence of actions, which correspond to

GUI interactions that trigger reconciliation (in the patch-recon condition) or forward evaluation

(in the forward evaluation condition). Each action results in both an updated output and an updated

L𝑐𝑘 program; cartokit additionally compiles the updated L𝑐𝑘 program to JavaScript for display

3
https://www.washingtonpost.com

4
https://www.nytimes.com/spotlight/graphics

5
GeoJSON is a standard interchange format used to encode geospatial data for web applications. The GeoJSON specification

is available at: https://datatracker.ietf.org/doc/html/rfc7946

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

https://www.washingtonpost.com
https://www.nytimes.com/spotlight/graphics
https://datatracker.ietf.org/doc/html/rfc7946

175:12 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

Table 1. Benchmark suite. LOC reports the number of lines of code in the final JavaScript program generated
by cartokit for the given benchmark. Action # reports the number of recon-triggering actions required to
reach the target map. Data (MB) shows the size of the map’s datasets, in megabytes.

ID Article Title Newsroom LOC Action # Data (MB)

1 “Maps of the April 2024 Total

Solar Eclipse”

The New York Times 54 13 8.2

2 “You’re not crazy. Spring is

getting earlier. Find out how

it’s changed in your town.”

The Washington Post 42 13 127

3 “Winter is warming almost

everywhere. See how it’s

changed in your town.”

The Washington Post 40 11 249.4

4 “A boat went dark. Finding it

could help save the world’s

fish.”

The Washington Post 47 12 2.7

5 “Bird populations are

declining. Some are in your

neighborhood.”

The Washington Post 60 17 7

6 “Will global warming make

temperature less deadly?”

The Washington Post 47 14 15

Median 47 13 11.6

to the user. When run in order, the sequence of actions in a workflow produces the final target

map and program for the workflow. Across our six workflows, there was a total of 80 unique

actions. We automated our workflows as Playwright [41] tests, which are publicly available at

https://github.com/parkerziegler/cartokit/tree/v0.5.2/tests/workflows.

We executed both reconciliation and forward evaluation for each of the 80 actions in Google

Chrome 130.0.6723.70 on a laptop running macOS 14.6.1 with a 2.3 GHz Quad-Core Intel Core i7

processor and 32GB RAM. To capture reconciliation execution times, we instrumented the source

code of cartokit’s reconciliation algorithm with the browser’s native Performance API [17]. To

capture forward evaluation execution times, we instrumented cartokit-generated programs with

identical calls to the browser Performance API. For each action, we measured 10 executions of the

corresponding reconciliation event and 10 forward evaluations of the corresponding program.

Importantly, measuring only code execution time does not give the full picture of how long it

takes for a new output to display. Given that we want to achieve interactive speeds to facilitate

direct manipulation programming, we also measure when the user interface reaches a quiescent

state after each reconciliation event (in the patch-recon condition) or each forward evaluation

(in the forward evaluation condition). We call this metric time-to-quiescent (hereafter TTQ). We

used the idle event of cartokit’s map rendering library, MapLibre GL JS [35], as the endpoint for

TTQ measurement. The idle event is fired when all currently requested tiles (that is, data) have

rendered on the map.

6.1.3 Results. Reconciliation outperformed forward evaluation, yielding amedian speedup
of 2.92× for TTQ and 28.06× for code execution time.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

https://github.com/parkerziegler/cartokit/tree/v0.5.2/tests/workflows

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:13

Fig. 8. Comparing forward evaluation and reconciliation across all benchmarks. (A) shows the time-
to-quiescent (TTQ) run times of each approach while (B) shows the code execution run time of each approach.
Each point reports the median run time across 10 executions. Error bars (dashed) show the standard error
(𝜎√

𝑛
) along both axes. Points below the diagonal represent actions for which reconciliation outperformed

forward evaluation. Points above the diagonal represent actions for which forward evaluation outperformed
reconciliation.

TTQ. Across the 80 actions in our six benchmark workflows, reconciliation led to speedups on

all of them. Of these speedups, 70 were by 2× or more and 38 by 3× or more. Recall that TTQ

measures the time it takes for the output map to reach an idle state, signaling that the update has

fully propagated to pixels rendered onscreen. These results suggest that reconciliation more than

halves interface latency in comparison with forward evaluation. Figure 8A shows the median TTQ

run times for forward evaluation and reconciliation; error bars (dashed) represent the standard

error (
𝜎√
𝑛
). The cumulative speedup on the benchmark suite as a whole was 3.87×.

Code Execution Times. Speedups were similarly consistent on code execution times as TTQ;

across the 80 actions from our six workflows, we observed that reconciliation sped up all of them.

Additionally, these speedups were often considerably more dramatic; of the 80 speedup instances, 56

(70%) were by an order of magnitude (10×) or more. Figure 8B shows the median code execution run

times for forward evaluation and reconciliation; error bars (dashed) again represent the standard

error. The cumulative speedup on the benchmark suite as a whole was 3.19×.

Speedups from reconciliation increased as forward evaluation TTQ increased; that is,
longer-running programs tended to see greater latency reduction from reconciliation.
We observed a positive correlation between forward evaluation TTQ and speedups from rec-

onciliation (Spearman’s rank correlation coefficient of 0.732). This indicates that reconciliation is

especially helpful (produces higher speedups) for tasks that have long forward evaluation times.

Figure 9 shows forward evaluation TTQ plotted against speedup.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:14 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

Fig. 9. Comparing forward evaluation TTQ against speedup from reconciliation. Each point reports
the median run time of forward evaluation TTQ on the x-axis and the speedup attributed to reconciliation
on the y-axis. Error bars (dashed) show the standard error for forward evaluation observations. The two
measures are positively correlated (Spearman’s rank correlation coefficient of 0.732).

6.2 Study 2: Measuring Reconciliation Performance In Situ
6.2.1 Setup. To extend our observation of reconciliation’s performance beyond the benchmark

suite, we instrumented the production deployment of cartokit to capture performance in situ

on organic real-world use over a 30-day period. Importantly, our instrumentation captures no

information about users or their data; we only record the system’s recon run time, patch run time,

and the size of generated programs (but not the contents of the programs themselves). Thus, we

cannot report any information on the size of user datasets, the number of interactions in a user

session, or the number of user sessions that occurred. Additionally, we do not have any information

on browser usage, operating system usage, or RAM capacity on users’ machines. In total, we

collected 153 reconciliation traces.

The goal of this study was to identify whether real users’ observed recon run times were in the

same range as those observed in our benchmark study. Beyond addressing this question, we cannot

learn much from this data. For example, we do not know whether collected traces came from a few

long-running sessions or many shorter sessions, or whether users were working with large or small

datasets. Lacking this information on the diversity and complexity of user workloads, we cannot

make more definitive claims about reconciliation’s performance in the general case. However, if

production traces displayed similar performance characteristics to traces from our benchmark suite,

it would provide some signal that our benchmarks realistically capture production use. In situ use

may also test interaction sequences that our benchmarks did not exercise.

Capturing TTQ in a production context was unfortunately not possible. This is due to the fact

that rendering updates enqueued by reconciliation may be batched by MapLibre GL JS, meaning

that multiple reconciliation events may produce only a single idle event. (For our benchmark

evaluation, we waited for the idle event to fire before triggering the next interaction, ensuring

one idle event per output update.) Thus, we report here only the code execution time of the

reconciliation algorithm.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:15

Fig. 10. Distribution of reconciliation code run execution times from production traces. Reconciliation
times are aggregated into bins of 10ms. A large majority of reconciliation times (130/153) fall within the
0-10ms range.

6.2.2 Results. In production, reconciliation achieved a median code execution time of
1.1ms, closely mirroring performance in our benchmark suite.Median reconciliation code

execution time across the benchmark suite was 0.9ms, suggesting the performance we observe in

our benchmark suite was relatively representative of in situ use. Of the 153 traces, 130 of them

(≈85%) took less than 10ms and 147 of them (≈96.1%) took less than 100ms. The remaining traces

tended to involve output updates that are inherently expensive, such as transitioning to a Dot
Density layer or computing new statistical breaks for a Choropleth layer. Such updates require

full linear scans of the dataset. Figure 10 shows the distribution of reconciliation’s code execution

times in production.

6.3 Time-to-Quiescent vs. Code Execution Times
A key difference between our evaluation and evaluations in prior work on direct manipulation pro-

gramming systems (e.g., [38, 64, 65]) is the choice to measure time-to-quiescent in addition to code

execution times as a performance metric. Our goal with this decision was to assess reconciliation’s

impact on interface latency, which we believe is a stronger indicator of the interactivity of a direct

manipulation programming system. Moreover, as our evaluation revealed, code execution times

were not always accurate predictors of TTQ. For example, Workflow 3-A4 had the highest median

reconciliation code execution time of any action (195.35ms), yielding only a 1.03× speedup over

forward evaluation (200.55ms). However, the same action actually witnessed a 3.89× TTQ speedup

from reconciliation (3177.10ms) compared to forward evaluation (12347.40ms). Figure 11 plots

reconciliation’s code execution time against its TTQ run time. The Spearman’s rank correlation

coefficient between the two measures is 0.070, indicating that the measures are not correlated.

Results like this suggest that measuring code execution times alone may lead to (1) false conclusions

about how fast a direct manipulation programming system is from a user’s perspective and (2)

erroneous claims about the classes of interactions that are relatively fast or slow.

One plausible explanation for the absence of TTQ measurement in prior work is that generated

outputs are inexpensive to compute, and so there is little (if any) difference between code execution

times and TTQ for these contexts. Indeed, modern web browsers are extremely efficient at rendering

HTML and SVG. In contrast, geospatial visualization—with its tens of megabyte dataset sizes,

asynchronous tile generation algorithms, and aggressive use of the GPU—is significantly more

resource-intensive. Going forward, if the community attempts to extend direct manipulation to

longer-running computations, it is possible that the distinction between quiescent times and

execution times will become more important.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:16 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

Fig. 11. Comparing reconciliation code execution time to reconciliation TTQ run time. Each point
reports the median run time of each measure across 10 executions. Error bars (dashed) show the standard
error (𝜎√

𝑛
) along both axes. The two measures have no discernible correlation (Spearman’s rank correlation

coefficient of 0.070).

7 Discussion
7.1 patch-recon Extends to General-Purpose Programming Languages
While Section 7.2 discusses how our choice of language in Section 4.1 is representative of existing

languages for tasks amenable to direct manipulation, it is natural to wonder: What about a language

more like the 𝜆-calculus? In particular, can patch-reconwork in languages with general recursion?

patch-recon can directly apply to general-purpose languages with recursion. The key insight

is that the complexity of patch-recon is a function of the user actions that the system developer

makes available, not the underlying language. As we will see in the following example, this is

because the signature of recon in Definition 3.1 is recon : Diff × Val → Val and thus depends only

on the definition of Diff and Val, not the underlying language Prog.

Example 7.1. Here we describe how to apply patch-recon to the direct manipulation program-

ming system Sketch-n-Sketch [30], which uses an Elm-like functional programming language

based on the 𝜆-calculus with general recursion. Consider the program 𝑃 below that constructs four

differently-colored SVG <circle> elements with radius 5 at the coordinates (0, 0), (10, 10), (20, 20),
and (30, 30):

List.indexedMap

(\i c -> circle 5 (10 * i) (10 * i) c)

["turquoise", "violet", "steelblue", "indigo"]

(List.indexedMap is a function that is implemented using recursion.) Let’s say a user changes

the color of the second <circle> to "red" via the GUI. The novelty of prior work is defining a

program transformation 𝛿 that, applied to this program, produces a new program 𝑃 ′
evaluating

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:17

to the same set of <circle> elements, but with the color of the second <circle> set to "red."
In our framing, this amounts to defining patch, which prior work has successfully tackled using

ideas like bidirectional evaluation [38] and value provenance [30] (Section 8.1). We do not claim

any new contributions in this space.

Rather, we require a new function recon that can immediately be applied to the current output

to produce new output without re-running the program. This last stipulation—not re-running

the program—differentiates the patch-recon technique from what is currently implemented in

Sketch-n-Sketch. In Sketch-n-Sketch, changing the color of the <circle>will generate the program
transformation 𝛿 above. This transformation creates a new program that is evaluated to get the new

output. In other words, every single time a color is changed on a <circle>, Sketch-n-Sketch goes

through the entire patch-eval cycle (the upper-right path in our commutative square in Definition

3.1). The same situation occurs every time an element is moved, duplicated, etc.

We can bypass this by defining a reconciliation function recon here. In this case, recon would
simply set the fill attribute of the selected SVG circle element to "red" directly. For moving,

recon would directly update the cx and cy attributes of the <circle> element; for duplication,

recon would simply clone the <circle> element and place it within the same subtree in the DOM.

Example 7.2. Let us now complicate the example above. Say we have the following program 𝑃 ′′

in Sketch-n-Sketch, which introduces a variable, color, that we reference in our iterated list.

color = "violet"

List.indexedMap

(\i c -> circle 5 (10 * i) (10 * i) c)

["turquoise", color, color, color]

In this case, if we change the color of the second <circle> to "red" in the GUI, we likely expect

the system to update the string bound to color from "violet" to "red" (as opposed to updating

just the second element in the list). Zhang et al. [66] demonstrated how to implement patch to

capture these semantics, but how would we implement recon for this case? In this formulation, we

are obligated to update <circle> elements beyond those the user has actively selected.

One strategy to address this problem is to tag output values with provenance information. For

example, in cartokit, marks carry both the id of the layer they belong to as well as functions for

re-computing channel values based on their associated data. Thus, when a single channel on a

single mark is updated, recon can easily identify the full set of affected marks and, for each mark,

re-execute the function of the modified channel. In a setting like our example, we can imagine using

expression provenance [2] to derive similar information, such that each <circle> “knows” that its

fill value is derived from the color variable (e.g., by tagging it with a shared identifier). recon
can then use this information to re-evaluate the fill of affected <circle> elements whenever the

color variable changes.
Ultimately, the key insight to take away from this example is that recon is enabled by carrying

some computation (e.g., cartokit’s channel functions) to output values for evaluation as needed.

This general approach may be useful for implementing recon when patch is more sophisticated.

Falling Back on Forward Evaluation. Of course, diffs can be even more complex than the two

examples above. Sketch-n-Sketch can famously create a Koch snowflake fractal parameterized

by recursive depth using only direct manipulation on the output [30]. In this extreme situation,

a corresponding diff would introduce recursion into a defined function, which can essentially

be considered a whole program rewrite. We view it as improbable that reconciliation will work

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:18 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

for such transformations; the program simply does need to be re-run. However, in such cases,

patch-recon degrades gracefully to prior state of the art; if a recon function cannot be defined for

a certain diff, the system can fall back on simply running forward evaluation. In other words, if

the lower-left path of the commutative square in Definition 3.1 is not available, we can always fall

back to the upper-right path.

7.2 Representativeness of the cartokit Language
By design, the language L𝑐𝑘 we introduce in Section 4.1 is quite similar to a large number of

existing languages for tasks amenable to direct manipulation. These languages include, for example,

Vega [52, 59] and Tableau’s VizQL [27]. Overall, this kind of visualization language has had broad

adoption, and there are a tremendous number of them—[39] recently identified 57, many with

substantial real-world use. We provide concrete examples of how patch-recon applies to two of

these languages; the approach is essentially the same as that for our language L𝑐𝑘 .

Example 7.3. Consider Vega-Lite [51, 60], a language for interactive charts. Here is a simple

example of a (partial) Vega-Lite specification for a stacked area chart:

{

"encoding": {

"x": {

"timeUnit": "yearmonth", "field": "date",

"axis": {"format": "%Y"}

},

"y": {

"aggregate": "sum", "field": "count"

},

"color": {

"field": "series",

"scale": {"scheme": "category20b"}

}

}

}

Interestingly, this language is quite similar to L𝑐𝑘 in structure and abstraction level, hinting at how

we can implement patch-recon. Let us imagine the user changes the color scheme of this visualiza-

tion to a different categorical color scheme (e.g., "observable10") via a GUI interaction. In this case,
patch would simply update the color.scale.scheme value in the program to "observable10."
Now, to define recon, we take a similar approach to what we do in cartokit:

(1) Create a scale function mapping the domain of the variable visualized in the color channel

("series") to the range of discrete colors in the selected scheme.

(2) Obtain references to all rendered marks. For Vega-Lite, these are SVG elements.

(3) For each rendered mark:

(a) Call the scale function, passing the mark’s corresponding data value as the argument to

obtain the mark’s new color.

(b) Update the mark’s fill and stroke attributes.

Crucially, using patch-recon would not entail re-evaluating the entire Vega-Lite spec using its

interpreter; rather, we would precisely update only the relevant portion of the program and the

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:19

relevant attributes of rendered SVG elements in the DOM. Proving soundness of patch-recon in
this domain would take a proof very similar to cartokit’s proof (see Appendix A).

Example 7.4. Beyond data visualization, other domains amenable to direct manipulation (such

as visual graphics creation and image processing) use similar languages. For our next concrete

example, we will describe patch-recon for a direct manipulation programming system targeting

Mermaid [40], a popular diagramming language. Imagine we had a simple flowchart diagram in

such a system as follows:

flowchart LR

id1{{First node}}

id2{{Second node}}

id1 –> id2

If we wanted to update the shape of the second node in the diagram from a hexagon (indicated

by the curly braces on the third line) to a parallelogram, patch could change the third line of the

above program to id2[/Second node/] (brackets and forward slashes indicate parallelogram). A

recon function would update the points and transform attributes of the rendered SVG polygon,

similar to the Sketch-n-Sketch example from Section 7.1. In this case, because the diff is simple,

recon is also simple. patch-recon avoids the need for full program re-evaluation, which could be

particularly important for a diagram with hundreds or thousands of nodes.

7.3 When should we use patch-recon vs. forward evaluation?
A patch-recon approach is (probably) harder to implement than an approach that centers on

running forward evaluation to keep program and output in agreement. For situations where

forward evaluation is sufficiently fast, the corresponding patch-recon implementation may be

more complex for a system developer to reason about and more heavyweight than its advantages

justify. We suggest using patch-recon in cases where programs are long-running; in cases where

programs are short-running, we recommend using the standard approach of patch followed by

forward evaluation. In our view, patch-recon does not replace forward evaluation. Rather, it

offers an alternative for settings where forward evaluation would make a direct manipulation

programming environment infeasible.

7.4 When should we use patch-recon vs. caching?
In Section 2, we argued that implementing an ad hoc caching scheme effectively approaches patch-
recon in the limit, albeit without the soundness guarantee. Going beyond correctness, we believe

there may be additional performance and maintainability benefits associated with patch-recon.
To build this intuition, let us revisit the example from Section 4, where a GUI interaction triggers

removal of the stroke-width channel from a single layer on the map. Notice here that patch-recon’s
update strategy is both extremely fine-grained and operates in place; it only modifies the stroke-
width channel of marks in the target layer while leaving other channels and layers untouched.

Moreover, as previously discussed, patch and recon run in parallel in this context—there is no

ordering constraint on their execution. Now, imagine that we replaced patch-recon with a layer-

level caching scheme that only re-evaluated modified layers while leaving the remainder intact.

On the surface, this may sound like an equivalent approach! In practice, however, this would be a

variation on the standard technique coupling a patch procedure with forward evaluation, with the

refinement that forward evaluation would reuse cached marks from unmodified layers. Notice that

this strategy still encounters two familiar issues: sequential execution and redundant computation.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:20 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

Concretely, an implementation would need to (1) throw away all rendered marks associated with

the modified layer, (2) update the layer in the program via patch, and finally (3) re-evaluate the layer
to a new set of rendered marks, despite the fact that many channels on the marks (e.g., fill-color,
fill-opacity) did not change. For large data (e.g., our implementation handles up to 1 million records),

the difference between in-place updates and partial re-evaluation produces a significant increase

in interface latency; we expect other direct manipulation programming systems targeting large

data or long-running programs will face the same issue. In short, an ad hoc caching scheme could

get us some performance improvement over forward evaluation, but it would certainly leave some

performance wins on the table.

In addition, it is unclear that such a scheme would be easier to implement or evolve than

patch-recon. Concretely, realizing the layer-level caching approach would require (1) building,

maintaining, and invalidating a cache of rendered marks, (2) maintaining a mapping of program

segments to cache entries, and (3) implementing a cache-aware partial evaluator. Moreover, it

may be difficult to adapt this approach over time if we want to change cache granularity; for

example, lowering our caching logic to the mark level would involve a full re-implementation.

patch-recon encourages a different view from the start: for a given GUI interaction, one wants

to make the smallest possible change to bring the program and output into agreement. In our

experience developing cartokit, this made the engineering goal clear—it shifted us from thinking

about what may be reused (caching) to determining what must be updated (patch-recon).
Ultimately, ad hoc caching may be a good choice when a system developer needs modest

performance improvements over forward evaluation to reach their interface latency goals. However,

we believe that a patch-recon structure is more likely to guide system developers to a performant

and maintainable implementation from the outset.

8 Related Work
8.1 Improving patch

Existing research on direct manipulation programming systems has focused primarily on the

problem of propagating changes in the program output to changes in the program itself; that is,

improving the patch function [8, 14, 23, 29, 31, 43, 54]. Some techniques heavily constrain the

locations or types of patch updates, including livelits [43] (which constrains updates to holes)

and early versions of Sketch-n-Sketch [14] (which constrain updates to numeric constants). Other

techniques like bidirectional evaluation [38], delta fusion [66], value provenance tracing [30], and

others [64, 65] have enabled more expressive program transformations, such as function creation,

recursive calls, and expression hoisting. Collectively, these techniques are attempts at tackling the

view-update problem [10] for GUIs as part of the broader research on bidirectional programming

languages [12, 22, 42].

In contrast to this prior work, we do not introduce a new technique for propagating output

changes to source programs. Rather, we see our patch-recon approach as complementary; we can

combine any of the techniques described above with reconciliation as long as we continue to prove

patch-recon correspondence.

8.2 Improving recon

Reconciliation is a form of incremental program evaluation; given a small program transformation

in the form of a diff, reconciliation determines how to execute just the diff to update the current

program output. In this section, we survey the prior work on incremental evaluation more generally.

While a handful of related techniques focus on incrementalizing evaluation with respect to program

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:21

updates (akin to reconciliation), others focus on responding to updates in the data supplied as

program input. Thus, we organize our discussion along this axis.

8.2.1 Incremental Evaluation with Program Updates. Reconciliation shares at least one core aimwith

prior work on incremental evaluation of evolving programs—reducing redundant recomputation.

Given some change to a program, incremental evaluation techniques attempt to identify and re-

evaluate only the portion of the program affected by the change. For example, incremental compilers

[33, 45–47, 55] operate by recompiling only those statements that are either (1) modified by the

programmer or (2) dependent on modified statements. Similarly, incremental program analysis

techniques (e.g., for computing dominator trees [58] or points-to analysis [48]) compute updates to

the analysis information based solely on the program change rather than rerunning the analysis

from scratch [16, 63]. Incremental evaluators for logic programs [49, 50] construct memo tables

mapping “calls” (subgoals) to their “answers” (provable instances); when the facts of a program

change, only the affected calls must be recomputed. Interestingly, much of this literature cites

improving the interactivity of programming systems as a core motivation—precisely the problem

reconciliation aims to tackle in the direct manipulation context.

8.2.2 Incremental Evaluation with Program Input Updates. Another branch of work in incremental

evaluation and self-adjusting computation focuses on rerunning only the necessary parts of a

program when the program input changes [3, 4, 7, 13, 15]. Broadly, these techniques work by

constructing (1) a dynamic dependency graph capturing dependencies between parts of the com-

putation and (2) a change propagation algorithm that identifies and re-evaluates dependencies in

response to input changes. When the result of re-evaluation does not yield a new output, related

dependencies need not be re-evaluated; their prior outputs can simply be reused. This general

strategy plays a critical role in modern web frameworks for constructing user interfaces (e.g., React

[19], Svelte [28]), which include some strategy for incremental update of the DOM in response to

changes in application state (e.g., virtual DOM [20], signals [15, 18]). This work also shares a close

connection to the rich literature on incremental view maintenance in databases [1, 9, 24–26].

8.2.3 recon-Style Updates Outside of Programming Contexts. Many GUIs use direct manipulation

as their core interaction model but do not author programs (e.g., Photoshop [6], Illustrator [5], and

others [21, 32]). Users leverage these interfaces to produce a particular output, but not a program

that they can apply to other inputs. Most tools in this category respond to GUI actions by calculating

a next output based on the current output. For example, in Photoshop, the system produces the next

image by modifying the current image, not by starting from the original input image and rerunning

the entire sequence of user-triggered modifications. In that this process presents a new value to the

user by operating on an existing value, we can think of it as being a recon-style operation. Despite
this surface resemblance, these tools are under no obligation to produce a program. This means

they sidestep the central, animating obligation of our approach: to update a program and its output

value in parallel, and to keep them in agreement without running the program in its entirety.

8.2.4 Reconciliation for Direct Manipulation Programming. We are not aware of any works that

use recon-style approaches in the context of direct manipulation programming.

8.2.5 Summary. In contrast to the prior work on incremental evaluation, we do not introduce a new

technique for implementing recon. Rather, we see our patch-recon approach as complementary;

we can integrate some of the techniques described above into reconciliation as long as we continue

to prove patch-recon correspondence.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:22 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

8.3 patch-recon Correspondence
Our central contribution is to exploit patch-recon correspondence by using reconciliation as a fast

means of achieving synchronization between programs and values. Our patch-recon correspon-
dence is analogous to a classic class of theorems from the literature on bidirectional programming

systems called PutGet [11, 22, 44, 61, 66], also known as Consistency [36, 37, 62] or UpdateE-

val [38]. At a high level, these theorems state that if a value 𝑣 ′ is backward-evaluated onto a program
𝑒 that evaluates to 𝑣 , then the resulting program 𝑒′ will evaluate to 𝑣 ′. Sometimes, this value is

described as the result of a direct manipulation, either directly [38] or in terms of a syntactic patch

obligation [66]. In contrast to our work, the mapping between 𝑣 and 𝑣 ′—that is, reconciliation—is
only used to reason about the correctness of these systems, as prior work has always assumed that

simply evaluating 𝑒′ to obtain 𝑣 ′ is fast enough.

8.4 Improving Performance for Direct Manipulation Programming Systems
Although our chosen technique for extending direct manipulation programming to long-running

programs is to eliminate forward evaluation via patch-recon correspondence, our higher-level

goal is to make direct manipulation programming systems efficient for interactive, large-scale

computation. We therefore share a goal with research that aims to speed up direct manipulation

programming, even if it does not eliminate forward evaluation.

Most evaluations of direct manipulation programming systems in the literature focus on assessing

expressiveness (that is, the ability of the system to produce target programs and outputs primarily

or solely through direct manipulation [14, 30, 66]) rather than performance. Some papers include

data on forward evaluation times [38, 64, 65], but generally emphasize backward evaluation of

output updates to program updates. We are aware of only two works identifying repeated forward

evaluation of modified programs as a barrier to achieving interactive speeds. Transmorphic [53], a

direct manipulation programming system for GUI development, reduces the total time spent on

forward evaluation by deferring full forward evaluation in cases where updates can be effectively

emulated on the output. Similarly, [34] offers additional “speculative” visual feedback on output

manipulations in order to defer running forward evaluation.

9 Conclusion
Direct manipulation programming systems have traditionally relied on forward evaluation to

guarantee program-output agreement by construction. While this strategy has succeeded for short-

running programs in domains like vector graphics and HTML documents, it has not allowed us to

scale direct manipulation programming to authoring long-running programs. In these contexts,

re-executing a complete program in response to every user interaction quickly crosses outside

of interactive speeds. This work presents patch-reconciliation correspondence, a novel strategy for

enforcing program-output agreement in direct manipulation programming systems that eliminates

the need for forward evaluation altogether. We prove our patch-recon approach sound for a lan-

guage and a set of direct manipulations interactions for the domain of geospatial data visualization,

and implement this instantiation in a new direct manipulation programming system, cartokit.
Our approach reduces interface latency on real-world program-authoring tasks, yielding larger

speedups for longer-running programs. We feel patch-recon is an important first step in making

direct manipulation programming feasible for interactively authoring long-running programs. We

also hope this work unlocks new research opportunities in direct manipulation programming by

expanding the paradigm’s applicability to tasks previously considered beyond its reach.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:23

Data Availability Statement
cartokit is freely available at https://alpha.cartokit.dev, and additional documentation for users

is available at https://docs.cartokit.dev. The cartokit source code is also publicly available at

https://github.com/parkerziegler/cartokit. We provide an archived snapshot of cartokit v0.5.2

and our full evaluation harness in amd64-compatible and arm64v8-compatible Docker images on

Zenodo [67, 68].

Acknowledgments
We are extremely grateful to our anonymous OOPLSA and PLDI reviewers for their thoughtful and

actionable feedback, and to our outstanding PLDI shepherd for their guidance and deep engagement

with our work. We would also like to thank the members of PLAIT Lab and EPIC Data Lab at the

University of California, Berkeley for their evergreen support and encouragement. Thanks are due,

as well, to cartokit’s early adopters in the data journalism community. This work is supported

in part by NSF grants FW-HTF 2129008 and CA-HDR 2033558, as well as by gifts from Google,

G-Research, Adobe, and Microsoft. Chasins is a Chan Zuckerberg Biohub Investigator.

References
[1] Supun Abeysinghe, Qiyang He, and Tiark Rompf. 2022. Efficient Incrementialization of Correlated Nested Aggregate

Queries using Relative Partial Aggregate Indexes (RPAI). In Proceedings of the 2022 International Conference on
Management of Data (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA, 136–149. doi:10.1145/

3514221.3517889

[2] Umut A. Acar, Amal Ahmed, James Cheney, and Roly Perera. 2012. A Core Calculus for Provenance. In Principles of
Security and Trust, Pierpaolo Degano and Joshua D. Guttman (Eds.). Springer, Berlin, Heidelberg, 410–429. doi:10.

1007/978-3-642-28641-4_22

[3] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, and Sam Westrick. 2020. Parallel Batch-Dynamic

Trees via Change Propagation. In 28th Annual European Symposium on Algorithms (ESA 2020) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 173), Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders (Eds.). Schloss

Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2:1–2:23. doi:10.4230/LIPIcs.ESA.2020.2

[4] Umut A. Acar, Guy E. Blelloch, and Robert Harper. 2006. Adaptive Functional Programming. ACM Transactions on
Programming Languages and Systems 28, 6 (Nov. 2006), 990–1034. doi:10.1145/1186632.1186634

[5] Adobe. 2024. Adobe Illustrator. https://www.adobe.com/products/illustrator.html. Accessed: 2024-11-14.

[6] Adobe. 2024. Adobe Photoshop. https://www.adobe.com/products/photoshop.html. Accessed: 2024-11-12.

[7] Daniel Anderson, Guy E. Blelloch, Anubhav Baweja, and Umut A. Acar. 2021. Efficient Parallel Self-Adjusting

Computation. In Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’21).
Association for Computing Machinery, New York, NY, USA, 59–70. doi:10.1145/3409964.3461799

[8] Gideon Avrahami, Kenneth P. Brooks, andMarc H. Brown. 1989. A Two-View Approach to Constructing User Interfaces.

SIGGRAPH Comput. Graph. 23, 3 (July 1989), 137–146. doi:10.1145/74334.74347

[9] Shivnath Babu and Jennifer Widom. 2001. Continuous Queries Over Data Streams. SIGMOD Rec. 30, 3 (Sept. 2001),
109–120. doi:10.1145/603867.603884

[10] F. Bancilhon and N. Spyratos. 1981. Update Semantics of Relational Views. ACM Trans. Database Syst. 6, 4 (Dec. 1981),
557–575. doi:10.1145/319628.319634

[11] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz, and Alan Schmitt. 2008. Boomerang:

Resourceful Lenses for String Data. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’08). Association for Computing Machinery, New York, NY, USA, 407–419. doi:10.

1145/1328438.1328487

[12] Aaron Bohannon, Benjamin C. Pierce, and Jeffrey A. Vaughan. 2006. Relational Lenses: A Language for Updatable

Views. In Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS ’06). Association for Computing Machinery, New York, NY, USA, 338–347. doi:10.1145/1142351.1142399

[13] Yan Chen, Umut A. Acar, and Kanat Tangwongsan. 2014. Functional Programming for Dynamic and Large Datawith Self-

Adjusting Computation. In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming
(ICFP ’14). Association for Computing Machinery, New York, NY, USA, 227–240. doi:10.1145/2628136.2628150

[14] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Programmatic and Direct Manipulation, Together

at Last. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

https://alpha.cartokit.dev
https://docs.cartokit.dev
https://github.com/parkerziegler/cartokit
https://doi.org/10.1145/3514221.3517889
https://doi.org/10.1145/3514221.3517889
https://doi.org/10.1007/978-3-642-28641-4_22
https://doi.org/10.1007/978-3-642-28641-4_22
https://doi.org/10.4230/LIPIcs.ESA.2020.2
https://doi.org/10.1145/1186632.1186634
https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/photoshop.html
https://doi.org/10.1145/3409964.3461799
https://doi.org/10.1145/74334.74347
https://doi.org/10.1145/603867.603884
https://doi.org/10.1145/319628.319634
https://doi.org/10.1145/1328438.1328487
https://doi.org/10.1145/1328438.1328487
https://doi.org/10.1145/1142351.1142399
https://doi.org/10.1145/2628136.2628150

175:24 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

(PLDI ’16). Association for Computing Machinery, New York, NY, USA, 341–354. doi:10.1145/2908080.2908103

[15] Evan Czaplicki and Stephen Chong. 2013. Asynchronous Functional Reactive Programming for GUIs. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13). Association for

Computing Machinery, New York, NY, USA, 411–422. doi:10.1145/2491956.2462161

[16] Alan Demers, Thomas Reps, and Tim Teitelbaum. 1981. Incremental Evaluation for Attribute Grammars with

Application to Syntax-Directed Editors. In Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’81). Association for Computing Machinery, New York, NY, USA, 105–116. doi:10.1145/

567532.567544

[17] MDN Web Docs. 2024. Performance – Web APIs. https://developer.mozilla.org/en-US/docs/Web/API/Performance.

Accessed: 2024-10-09.

[18] Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation. In Proceedings of the Second ACM SIGPLAN
International Conference on Functional Programming (ICFP ’97). Association for Computing Machinery, New York, NY,

USA, 263–273. doi:10.1145/258948.258973

[19] Facebook. 2024. React. https://react.dev/. Accessed: 2024-09-24.

[20] Facebook. 2024. Virtual DOM and Internals. https://legacy.reactjs.org/docs/faq-internals.html. Accessed: 2024-11-13.

[21] Figma. 2024. Figma. https://figma.com/. Accessed: 2024-11-12.

[22] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt. 2007. Combinators

for Bidirectional Tree Transformations: A Linguistic Approach to the View-Update Problem. ACM Trans. Program.
Lang. Syst. 29, 3 (May 2007), 17–es. doi:10.1145/1232420.1232424

[23] Koumei Fukahori, Daisuke Sakamoto, Jun Kato, and Takeo Igarashi. 2014. CapStudio: An Interactive Screencast for

Visual Application Development. In CHI ’14 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’14).
Association for Computing Machinery, New York, NY, USA, 1453–1458. doi:10.1145/2559206.2581138

[24] Timothy Griffin and Leonid Libkin. 1995. Incremental Maintenance of Views with Duplicates. In Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data (SIGMOD ’95). Association for Computing Machinery,

New York, NY, USA, 328–339. doi:10.1145/223784.223849

[25] Ashish Gupta and Inderpal Singh Mumick. 1999. Materialized Views: Techniques, Implementations, and Applications.

In Materialized Views: Techniques, Implementations, and Applications. MIT Press, Cambridge, MA, USA, 145–157.

doi:10.7551/mitpress/4472.001.0001

[26] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. 1993. Maintaining Views Incrementally. In Proceedings
of the 1993 ACM SIGMOD International Conference on Management of Data (SIGMOD ’93). Association for Computing

Machinery, New York, NY, USA, 157–166. doi:10.1145/170035.170066

[27] Pat Hanrahan. 2006. VizQL: A Language for Query, Analysis and Visualization. In Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’06). Association for Computing Machinery, New York, NY,

USA, 721. doi:10.1145/1142473.1142560

[28] Rich Harris and Svelte Contributors. 2024. Svelte. https://svelte.dev/. Accessed: 2024-09-24.

[29] Brian Hempel and Ravi Chugh. 2016. Semi-Automated SVG Programming via Direct Manipulation. In Proceedings of
the 29th Annual Symposium on User Interface Software and Technology (UIST ’16). Association for Computing Machinery,

New York, NY, USA, 379–390. doi:10.1145/2984511.2984575

[30] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-Directed Programming for SVG. In

Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (UIST ’19). Association for

Computing Machinery, New York, NY, USA, 281–292. doi:10.1145/3332165.3347925

[31] Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh. 2018. Deuce: A Lightweight User Interface for Structured

Editing. In Proceedings of the 40th International Conference on Software Engineering (ICSE ’18). Association for Computing

Machinery, New York, NY, USA, 654–664. doi:10.1145/3180155.3180165

[32] Jennifer Jacobs, Sumit Gogia, Radomír Mĕch, and Joel R. Brandt. 2017. Supporting Expressive Procedural Art Creation

through Direct Manipulation. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI
’17). Association for Computing Machinery, New York, NY, USA, 6330–6341. doi:10.1145/3025453.3025927

[33] Mark Kahrs. 1979. Implementation of an Interactive Programming System. In Proceedings of the 1979 SIGPLAN
Symposium on Compiler Construction (SIGPLAN ’79). Association for Computing Machinery, New York, NY, USA, 76–82.

doi:10.1145/800229.806956

[34] Richard Lin, Rohit Ramesh, Nikhil Jain, Josephine Koe, Ryan Nuqui, Prabal Dutta, and Bjoern Hartmann. 2021. Weaving

Schematics and Code: Interactive Visual Editing for Hardware Description Languages. In The 34th Annual ACM
Symposium on User Interface Software and Technology (UIST ’21). Association for Computing Machinery, New York, NY,

USA, 1039–1049. doi:10.1145/3472749.3474804

[35] MapLibre. 2024. MapLibre GL JS. https://maplibre.org/maplibre-gl-js/docs/. Accessed: 2023-04-05.

[36] Kazutaka Matsuda and Meng Wang. 2015. Applicative Bidirectional Programming with Lenses. In Proceedings of
the 20th ACM SIGPLAN International Conference on Functional Programming (ICFP 2015). Association for Computing

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

https://doi.org/10.1145/2908080.2908103
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/567532.567544
https://doi.org/10.1145/567532.567544
https://developer.mozilla.org/en-US/docs/Web/API/Performance
https://doi.org/10.1145/258948.258973
https://react.dev/
https://legacy.reactjs.org/docs/faq-internals.html
https://figma.com/
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/2559206.2581138
https://doi.org/10.1145/223784.223849
https://doi.org/10.7551/mitpress/4472.001.0001
https://doi.org/10.1145/170035.170066
https://doi.org/10.1145/1142473.1142560
https://svelte.dev/
https://doi.org/10.1145/2984511.2984575
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3180155.3180165
https://doi.org/10.1145/3025453.3025927
https://doi.org/10.1145/800229.806956
https://doi.org/10.1145/3472749.3474804
https://maplibre.org/maplibre-gl-js/docs/

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:25

Machinery, New York, NY, USA, 62–74. doi:10.1145/2784731.2784750

[37] Kazutaka Matsuda and Meng Wang. 2018. HOBiT: Programming Lenses Without Using Lens Combinators. In

Programming Languages and Systems, Amal Ahmed (Ed.). Springer International Publishing, Cham, 31–59. doi:10.

1007/978-3-319-89884-1_2

[38] Mikaël Mayer, Viktor Kuncak, and Ravi Chugh. 2018. Bidirectional Evaluation with Direct Manipulation. Proceedings
of the ACM on Programming Languages 2, OOPSLA (Oct. 2018), 127:1–127:28. doi:10.1145/3276497

[39] Andrew M. McNutt. 2023. No Grammar to Rule Them All: A Survey of JSON-style DSLs for Visualization. IEEE
Transactions on Visualization and Computer Graphics 29, 1 (Jan. 2023), 160–170. doi:10.1109/TVCG.2022.3209460

[40] Mermaid Contributors. 2025. Mermaid — Diagramming and Charting Tool. https://mermaid.js.org/. Accessed: 2025-03-

23.

[41] Microsoft. 2024. Playwright. https://playwright.dev/. Accessed: 2024-10-09.

[42] Keisuke Nakano, Zhenjiang Hu, and Masato Takeichi. 2009. Consistent Web Site Updating Based on Bidirectional

Transformation. International Journal on Software Tools for Technology Transfer 11, 6 (Dec. 2009), 453–468. doi:10.1007/
s10009-009-0124-3

[43] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi Chugh. 2021. Filling Typed Holes with

Live GUIs. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation (PLDI ’21). Association for Computing Machinery, New York, NY, USA, 511–525. doi:10.1145/3453483.

3454059

[44] Hugo Pacheco, Zhenjiang Hu, and Sebastian Fischer. 2014. Monadic Combinators for "Putback" Style Bidirectional

Programming. In Proceedings of the ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program Manipulation
(PEPM ’14). Association for Computing Machinery, New York, NY, USA, 39–50. doi:10.1145/2543728.2543737

[45] Lori L. Pollock and Mary Lou Soffa. 1985. Incremental Compilation of Optimized Code. In Proceedings of the 12th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL ’85). Association for Computing

Machinery, New York, NY, USA, 152–164. doi:10.1145/318593.318629

[46] Patrick Rein, Robert Hirschfeld, and Marcel Taeumel. 2016. Gramada: Immediacy in Programming Language De-

velopment. In Proceedings of the 2016 ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward! 2016). Association for Computing Machinery, New York, NY, USA, 165–179.

doi:10.1145/2986012.2986022

[47] Steven P. Reiss. 1984. An Approach to Incremental Compilation. In Proceedings of the 1984 SIGPLAN Symposium on
Compiler Construction (SIGPLAN ’84). Association for Computing Machinery, New York, NY, USA, 144–156. doi:10.

1145/502874.502889

[48] Diptikalyan Saha and C. R. Ramakrishnan. 2005. Incremental and Demand-Driven Points-To Analysis using Logic

Programming. In Proceedings of the 7th ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP ’05). Association for Computing Machinery, New York, NY, USA, 117–128. doi:10.1145/1069774.

1069785

[49] Diptikalyan Saha and C. R. Ramakrishnan. 2006. Incremental Evaluation of Tabled Prolog: Beyond Pure Logic Programs.

In Practical Aspects of Declarative Languages, Pascal Van Hentenryck (Ed.). Springer, Berlin, Heidelberg, 215–229.

doi:10.1007/11603023_15

[50] Diptikalyan Saha and C. R. Ramakrishnan. 2006. A Local Algorithm for Incremental Evaluation of Tabled Logic

Programs. In Logic Programming, Sandro Etalle and Mirosław Truszczyński (Eds.). Springer, Berlin, Heidelberg, 56–71.

doi:10.1007/11799573_7

[51] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer. 2017. Vega-Lite: A Grammar of

Interactive Graphics. IEEE Transactions on Visualization and Computer Graphics 23, 1 (Jan. 2017), 341–350. doi:10.1109/
TVCG.2016.2599030

[52] Arvind Satyanarayan, Kanit Wongsuphasawat, and Jeffrey Heer. 2014. Declarative Interaction Design for Data

Visualization. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (UIST ’14).
Association for Computing Machinery, New York, NY, USA, 669–678. doi:10.1145/2642918.2647360

[53] R. Schreiber, R. Krahn, D.H.H. Ingalls, and R. Hirschfeld. 2017. Transmorphic: Mapping Direct Manipulation to
Source Code Transformations. Universitätsverlag Potsdam, Potsdam, Germany. https://books.google.com/books?id=

88RADgAAQBAJ

[54] Christopher Schuster and Cormac Flanagan. 2016. Live Programming by Example: Using Direct Manipulation for Live

Program Synthesis. In LIVE Workshop. Rome, Italy.

[55] Mayer D. Schwartz, Norman M. Delisle, and Vimal S. Begwani. 1984. Incremental Compilation in Magpie. In Proceedings
of the 1984 SIGPLAN Symposium on Compiler Construction (SIGPLAN ’84). Association for Computing Machinery, New

York, NY, USA, 122–131. doi:10.1145/502874.502887

[56] Samyukta Sherugar and Raluca Budiu. 2016. Direct Manipulation: Definition. https://www.nngroup.com/articles/direct-

manipulation. Accessed: 2024-11-14.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

https://doi.org/10.1145/2784731.2784750
https://doi.org/10.1007/978-3-319-89884-1_2
https://doi.org/10.1007/978-3-319-89884-1_2
https://doi.org/10.1145/3276497
https://doi.org/10.1109/TVCG.2022.3209460
https://mermaid.js.org/
https://playwright.dev/
https://doi.org/10.1007/s10009-009-0124-3
https://doi.org/10.1007/s10009-009-0124-3
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1145/2543728.2543737
https://doi.org/10.1145/318593.318629
https://doi.org/10.1145/2986012.2986022
https://doi.org/10.1145/502874.502889
https://doi.org/10.1145/502874.502889
https://doi.org/10.1145/1069774.1069785
https://doi.org/10.1145/1069774.1069785
https://doi.org/10.1007/11603023_15
https://doi.org/10.1007/11799573_7
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1145/2642918.2647360
https://books.google.com/books?id=88RADgAAQBAJ
https://books.google.com/books?id=88RADgAAQBAJ
https://doi.org/10.1145/502874.502887
https://www.nngroup.com/articles/direct-manipulation
https://www.nngroup.com/articles/direct-manipulation

175:26 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

[57] Ben Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming Languages. Computer 16, 8 (Aug. 1983),
57–69. doi:10.1109/MC.1983.1654471

[58] Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. 1997. Incremental Computation of Dominator Trees. ACM
Trans. Program. Lang. Syst. 19, 2 (March 1997), 239–252. doi:10.1145/244795.244799

[59] Vega Contributors. 2025. Vega — A Visualization Grammar. https://vega.github.io/vega/about/. Accessed: 2025-03-23.
[60] Vega-Lite Contributors. 2025. Vega-Lite — A High-Level Grammar of Interactive Graphics. https://vega.github.io/vega-

lite/. Accessed: 2025-03-23.

[61] Janis Voigtländer. 2009. Bidirectionalization for Free! (Pearl). In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’09). Association for Computing Machinery, New York, NY,

USA, 165–176. doi:10.1145/1480881.1480904

[62] Masaomi Yamaguchi, Kazutaka Matsuda, Cristina David, and Meng Wang. 2022. Synbit: Synthesizing Bidirectional

Programs Using Unidirectional Sketches. Formal Methods in System Design 61, 2 (Dec. 2022), 198–247. doi:10.1007/

s10703-023-00436-9

[63] Frank Kenneth Zadeck. 1984. Incremental Data Flow Analysis in a Structured Program Editor. SIGPLAN Not. 19, 6
(June 1984), 132–143. doi:10.1145/502949.502888

[64] Xing Zhang, Guanchen Guo, Xiao He, and Zhenjiang Hu. 2023. Bidirectional Object-Oriented Programming: Towards

Programmatic and Direct Manipulation of Objects. Proceedings of the ACM on Programming Languages 7, OOPSLA1
(April 2023), 83:230–83:255. doi:10.1145/3586035

[65] Xing Zhang and Zhenjiang Hu. 2022. Towards Bidirectional Live Programming for Incomplete Programs. In Proceedings
of the 44th International Conference on Software Engineering (ICSE ’22). Association for Computing Machinery, New

York, NY, USA, 2154–2164. doi:10.1145/3510003.3510195

[66] Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu. 2024. Fusing Direct Manipulations

into Functional Programs. Proceedings of the ACM on Principles of Programming Languages 8, POPL (Jan. 2024),

41:1211–41:1238. doi:10.1145/3632883

[67] Parker Ziegler, Justin Lubin, and Sarah E. Chasins. 2025. cartokit Docker Image. Zenodo. doi:10.5281/zenodo.15047320

[68] Parker Ziegler, Justin Lubin, and Sarah E. Chasins. 2025. cartokit Docker Image (Exact Version for Artifact Evaluation).

Zenodo. doi:10.5281/zenodo.15079881

Received 2024-11-15; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1145/244795.244799
https://vega.github.io/vega/about/
https://vega.github.io/vega-lite/
https://vega.github.io/vega-lite/
https://doi.org/10.1145/1480881.1480904
https://doi.org/10.1007/s10703-023-00436-9
https://doi.org/10.1007/s10703-023-00436-9
https://doi.org/10.1145/502949.502888
https://doi.org/10.1145/3586035
https://doi.org/10.1145/3510003.3510195
https://doi.org/10.1145/3632883
https://doi.org/10.5281/zenodo.15047320
https://doi.org/10.5281/zenodo.15079881

	Abstract
	1 Introduction
	2 Overview
	3 Problem Statement
	4 Reconciliation for Direct Manipulation Programming
	4.1 Syntax, Semantics, and Patches
	4.2 Reconciliation Function

	5 Implementation
	6 Evaluation
	6.1 Study 1: Comparing Reconciliation vs. Forward Evaluation Performance on Six Real-World Benchmarks
	6.2 Study 2: Measuring Reconciliation Performance In Situ
	6.3 Time-to-Quiescent vs. Code Execution Times

	7 Discussion
	7.1 patch-recon Extends to General-Purpose Programming Languages
	7.2 Representativeness of the cartokit Language
	7.3 When should we use patch-recon vs. forward evaluation?
	7.4 When should we use patch-recon vs. caching?

	8 Related Work
	8.1 Improving patch
	8.2 Improving recon
	8.3 patch-recon Correspondence
	8.4 Improving Performance for Direct Manipulation Programming Systems

	9 Conclusion
	Acknowledgments
	References

