
Programming by Navigation

JUSTIN LUBIN, University of California, Berkeley, USA
PARKER ZIEGLER, University of California, Berkeley, USA
SARAH E. CHASINS, University of California, Berkeley, USA

When a program synthesis task starts from an ambiguous specification, the synthesis process often involves an
iterative specification refinement process. We introduce the Programming by Navigation Synthesis Problem, a
new synthesis problem adapted specifically for supporting iterative specification refinement in order to find a
particular target solution. In contrast to prior work, we prove that synthesizers that solve the Programming
by Navigation Synthesis Problem show all valid next steps (Strong Completeness) and only valid next
steps (Strong Soundness). To meet the demands of the Programming by Navigation Synthesis Problem, we
introduce an algorithm to turn a type inhabitation oracle (in the style of classical logic) into a fully constructive
program synthesizer. We then define such an oracle via sound compilation to Datalog. Our empirical evaluation
shows that this technique results in an efficient Programming by Navigation synthesizer that solves tasks
that are either impossible or too large for baselines to solve. Our synthesizer is the first to guarantee that its
specification refinement process satisfies both Strong Completeness and Strong Soundness.

CCS Concepts: • Software and its engineering→ Automatic programming.

Additional Key Words and Phrases: Interactive Program Synthesis, Component-Based Synthesis, Datalog

ACM Reference Format:
Justin Lubin, Parker Ziegler, and Sarah E. Chasins. 2025. Programming by Navigation. Proc. ACM Program.

Lang. 9, PLDI, Article 165 (June 2025), 28 pages. https://doi.org/10.1145/3729264

1 Introduction

Program synthesis tasks often begin with an underspecification of a target program [38]. If we care
about refining this underspecification to reach not just any program but a particular program, then
program synthesizers can employ an iterative specification refinement process [55, 83]. Our work
starts from the observation that no existing technique for specification refinement offers what we
will call Strong Completeness and Strong Soundness; that is, the guarantee that, at each
round of synthesis, the synthesizer presents all the valid next steps (Strong Completeness)
and only the valid next steps (Strong Soundness).
We therefore introduce the Programming by Navigation Synthesis Problem, an interactive

program synthesis problem formulated such that synthesizers solving the problem are guaranteed
to provide Strong Completeness and Strong Soundness. In Programming by Navigation, a
step provider takes a work-in-progress program and returns the set of all and only the valid next
steps. In contrast to prior work, any step from this set may be selected, and none will refine the
specification to be unsatisfiable.
Taken together, Strong Completeness and Strong Soundness seem to imply that a

synthesizer that solves the Programming by Navigation Synthesis Problem must somehow be

Authors’ Contact Information: Justin Lubin, University of California, Berkeley, Berkeley, USA, justinlubin@berkeley.edu;
Parker Ziegler, University of California, Berkeley, Berkeley, USA, peziegler@cs.berkeley.edu; Sarah E. Chasins, University
of California, Berkeley, Berkeley, USA, schasins@cs.berkeley.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/6-ART165
https://doi.org/10.1145/3729264

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

HTTPS://ORCID.ORG/0000-0003-2311-1873
HTTPS://ORCID.ORG/0000-0001-9462-2123
HTTPS://ORCID.ORG/0000-0003-0557-3580
https://doi.org/10.1145/3729264
https://orcid.org/0000-0003-2311-1873
https://orcid.org/0000-0001-9462-2123
https://orcid.org/0000-0003-0557-3580
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729264

165:2 Justin Lubin, Parker Ziegler, and Sarah E. Chasins

aware of all possible solutions to the synthesis problem ahead of time, so that the correct paths
can be returned. However, enumerating all solutions does not scale when there are many possible
solutions to the underspecification and cannot succeed when there are infinitely many solutions.

To meet the demands of the Programming by Navigation Synthesis Problem, we observe that we
can transform an inhabitation oracle—a procedure that simply returns “yes” or “no” as to whether or
not a type is inhabited, in the style of classical logic—into a fully constructive program synthesizer.
With the flexibility granted by only needing to return “yes” or “no,” we can then define a fast
Datalog-backed inhabitation oracle that uses fact derivability to prove type inhabitation.
We implement our solution to the Programming by Navigation Synthesis Problem in a system

called Honeybee and evaluate it on a benchmark suite of 21 programs from three domains: generic
synthesis tasks, bioinformatics workflows, and geospatial data analyses. We find that, unlike
enumeration, Honeybee applies to benchmarks that have infinitely many solutions, and scales well
to benchmarks with a finite but large number of solutions.

Contributions. In summary, we contribute:
(1) Programming by Navigation: A novel program synthesis problem, formulated such that

any synthesizer that solves the problem achieves both StrongCompleteness and Strong
Soundness (that is, presents all valid next steps and only valid next steps).

(2) Top–Down Classical–Constructive Synthesis, a solution to the Programming by Naviga-
tion Synthesis Problem. We (i) instantiate Programming by Navigation for top-down program
construction steps, (ii) introduce an algorithm to solve the Programming by Navigation
Synthesis Problem in this setting by transforming a classical-style inhabitation oracle into a
constructive program synthesizer, and (iii) provide such an oracle via compilation to Datalog.

(3) Implementation and Evaluation: We implement our instantiation of Programming by
Navigation in a tool called Honeybee and evaluate its performance empirically.

2 Overview

To illustrate the core insights of our approach, we consider a relatively small example.

Setup. Suppose we define the following structs:

struct 𝐴⟨int⟩ { · · · } struct 𝑅⟨int⟩ { · · · } struct𝑀 ⟨int, int, bool⟩ { · · · } struct 𝐷 ⟨int, int⟩ { · · · }

Our goal will be to synthesize a composition of components between these types. These components
will be functions annotated with validity conditions for when they are valid to call, but we will not
be inspecting the bodies of the functions. Thus, we need not inspect the bodies of these types.

These types are standard product types that one would expect from a mainstream language, with
one additional feature. We parameterize each type by zero or more base values like integers or
booleans; we call these values the type’s metadata. For example,1 in a bioinformatics context, 𝑅⟨2⟩
could be the type of an integer vector where each entry is the number of times a gene transcript
appears in a tissue labeled Sample 2. In a geospatial analysis context, 𝑅⟨90⟩ could be the type
of a raster image with a spatial resolution of 90 meters2/pixel. Although the underlying data is
extremely different in these contexts, we can capture both with the same type-level metadata.
Let us now consider some functions over these types:

𝑞1, 𝑞2 : () →𝜑1 𝑅

𝑎1, 𝑎2 : () →𝜑1 𝐴

𝑠 : 𝐴→𝜑2 𝑅

𝑐 : 𝑅 × 𝑅 →𝜑3 𝑀

𝑏 : 𝑀 →𝜑4 𝑀

𝑑 : 𝑀 →𝜑5 𝐷

1We include these concrete examples to provide intuition but emphasize that our synthesis problem and solution are
domain-agnostic. Understanding the domain-specific content is entirely optional for understanding our contributions.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

Programming by Navigation 165:3

These functions are standard as well, with one additional feature. Each function is annotated with
a validity condition 𝜑 that constrains when it may be called. Importantly, these validity conditions
can reference the metadata of their input and output types. For example, these functions may be
annotated with the following validity conditions:

𝜑1 := 𝑆 (ret1)
𝜑2 := ret1 = param1,1

𝜑3 := ret1 = param1,1 ∧ ret2 = param2,1 ∧ ret3 = ⊥
𝜑4 := ret1 = param1,1 ∧ ret2 = param1,2 ∧ ret3 = ⊤ ∧ param1,3 = ⊤
𝜑5 := ret1 = param1,1 ∧ ret2 = param1,2

Validity condition 𝜑5 for 𝑑 states that the first metadata argument of the return type (ret1) must
be equal to the first metadata argument of the type of the function’s first argument (param1,1), and
similarly for the second metadata argument of the return type and the second metadata argument
of the function’s first argument. Thus, if 𝑑 is called on an argument of type, say,𝑀 ⟨1, 2,⊤⟩, then it
can have a return type of 𝐷 ⟨1, 2⟩ but not 𝐷 ⟨5, 6⟩. Throughout the paper, we use superscripts on a
function to refer to the metadata values of a function’s return type; for example, 𝑐1,2,⊤ would have
return type𝑀 ⟨1, 2,⊤⟩ and 𝑑1,2 would have return type 𝐷 ⟨1, 2⟩. As a concrete example, a function
𝑓 : 𝑅 →𝜑 𝑅 with 𝜑 := param1,1 < ret1 could be the type of a downsampling operation in geospatial
analysis, in which the output raster image must have a less precise spatial resolution than the input.

Validity condition 𝜑1 demonstrates an important aspect of our predicate language: the ability to
query atomic propositions like 𝑆 . In addition to a goal type like 𝐷 ⟨1, 2⟩, our initial specification will
include a set Δ of propositions assumed to be true. For example, Δ = {𝑆 (1), 𝑆 (2)} would mean that
𝑆 holds (only) on 1 and 2, and 𝜑1 would hold when a return type’s first metadata argument is 1 or 2.

To summarize, we will consider the library of types and functions to be fixed, and our initial
specification will consist of the following two pieces of information:
(1) A goal type (e.g., 𝐷 ⟨1, 2⟩).
(2) A set of atomic propositions to set to true (e.g., {𝑆 (1), 𝑆 (2)}).

A composition of functions is said to satisfy this specification if it can be assigned the goal type
and all validity conditions of the called functions are met given the assumed atomic propositions.

Possible Tasks. We can now, at a high level, consider three different types of synthesis problem:
(1) The Any task: Return any solution that satisfies the specification. This is the standard

program synthesis problem.
(2) The All task: Return all solutions that satisfy the specification. Some program syn-

thesizers that solve the Any task can be extended to solve the All task by continuing search
beyond just the first solution found to exhaustively search the space.

(3) The Particular task: Return a particular solution that satisfies the specification.
When there are finitely many solutions, synthesizers that solve the All task can solve the
Particular task by returning all solutions. Another approach is to solicit specification
refinements.

In this paper, we turn our attention to the last of these three tasks. Returning to our example, one
solution of minimal size is 𝑑1,2 (𝑐1,2,⊥ (𝑞11 (), 𝑞21 ())). It turns out that there are 32 solutions in total:

𝑑1,2 (𝑐1,2,⊥ (𝑞11 (), 𝑞21 ()))
𝑑1,2 (𝑐1,2,⊥ (𝑞11 (), 𝑞22 ()))
𝑑1,2 (𝑐1,2,⊥ (𝑞12 (), 𝑞21 ()))
𝑑1,2 (𝑐1,2,⊥ (𝑞12 (), 𝑞22 ()))
𝑑1,2 (𝑐1,2,⊥ (𝑠1 (𝑎11 ()), 𝑞21 ()))
𝑑1,2 (𝑐1,2,⊥ (𝑠1 (𝑎11 ()), 𝑞22 ()))
𝑑1,2 (𝑐1,2,⊥ (𝑠1 (𝑎12 ()), 𝑞21 ()))
𝑑1,2 (𝑐1,2,⊥ (𝑠1 (𝑎12 ()), 𝑞22 ()))

𝑑1,2 (𝑐1,2,⊥ (𝑞11 (), 𝑠2 (𝑎21 ())))
𝑑1,2 (𝑐1,2,⊥ (𝑞11 (), 𝑠2 (𝑎22 ())))
𝑑1,2 (𝑐1,2,⊥ (𝑞12 (), 𝑠2 (𝑎21 ())))
𝑑1,2 (𝑐1,2,⊥ (𝑞12 (), 𝑠2 (𝑎22 ())))
𝑑1,2 (𝑐1,2,⊥ (𝑠1 (𝑎11 ()), 𝑠2 (𝑎21 ())))
𝑑1,2 (𝑐1,2,⊥ (𝑠1 (𝑎11 ()), 𝑠2 (𝑎22 ())))
𝑑1,2 (𝑐1,2,⊥ (𝑠1 (𝑎12 ()), 𝑠2 (𝑎21 ())))
𝑑1,2 (𝑐1,2,⊥ (𝑠1 (𝑎12 ()), 𝑠2 (𝑎22 ())))

𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊤ (𝑞11 (), 𝑞21 ())))
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊤ (𝑞11 (), 𝑞22 ())))
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊤ (𝑞12 (), 𝑞21 ())))
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊤ (𝑞12 (), 𝑞22 ())))
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊤ (𝑠1 (𝑎11 ()), 𝑞21 ())))
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊤ (𝑠1 (𝑎11 ()), 𝑞22 ())))
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊤ (𝑠1 (𝑎12 ()), 𝑞21 ())))
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊤ (𝑠1 (𝑎12 ()), 𝑞22 ())))

𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊤ (𝑞11 (), 𝑠2 (𝑎21 ()))))
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊤ (𝑞11 (), 𝑠2 (𝑎22 ()))))
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊤ (𝑞12 (), 𝑠2 (𝑎21 ()))))
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊤ (𝑞12 (), 𝑠2 (𝑎22 ()))))
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊤ (𝑠1 (𝑎11 ()), 𝑠2 (𝑎21 ()))))
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊤ (𝑠1 (𝑎11 ()), 𝑠2 (𝑎22 ()))))
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊤ (𝑠1 (𝑎12 ()), 𝑠2 (𝑎21 ()))))
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊤ (𝑠1 (𝑎12 ()), 𝑠2 (𝑎22 ()))))

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

165:4 Justin Lubin, Parker Ziegler, and Sarah E. Chasins

Even with a precise logical specification, there may be many valid solutions to choose between. For
example, bubble sort, insertion sort, merge sort, quick sort, and heap sort (each of which may be
stable or unstable) are all sorting functions; the choice to use one or another is context-dependent.
The question, then, is how to have a synthesis approach that enables choosing a particular

solution among many. As mentioned above, one option is simply to return all solutions, but this
only works if there are finitely many solutions. Moreover, when the number of solutions is finite but
large, such an approach wastes synthesis time exploring many solutions that are not the particular
target solution. As we will see in our evaluation (Section 7.2), this approach does not scale when
there are combinatorially-many solutions. If we set out to design a program synthesizer around
solving the Particular task from the start, can we reach the particular solution more quickly?

ASIDE: What are these types, atomic propositions, and functions, anyway? Throughout Section 2,
we keep the working example self-contained and generic to demonstrate our key insights. However, the
types and functions we define correspond precisely to a common real-world task that biologists often
need to perform in the course of analyzing wet-lab data: computing sets of differentially-expressed genes
between two biological samples.

The atomic propositions correspond to what data they have on hand. In the case of differential gene
expression, they have raw RNA sequencing data: 𝑆 (1) and 𝑆 (2) mean that RNA sequencing data for
Samples 1 and 2 are available.

The types correspond to standard datatypes from bioinformatics:
• 𝐴⟨𝑛⟩ is an alignment of reads from Sample 𝑛 to a genome (e.g. in BAM file format).
• 𝑅⟨𝑛⟩ is a vector of gene read counts for Sample 𝑛.
• 𝑀 ⟨𝑛1, 𝑛2, 𝑏⟩ is a read count matrix for Samples 𝑛1 and 𝑛2, where 𝑏 is a boolean value to track
whether or not the matrix has undergone batch correction to account for batch-level differences
in sequencing runs.
• 𝐷 ⟨𝑛1, 𝑛2⟩ is the result of a differential gene expression test between Samples 𝑛1 and 𝑛2.

The functions correspond to standard bioinformatics algorithms:
• 𝑞1 and 𝑞2 correspond to transcript quantifiers such as kallisto [20] and salmon [81].
• 𝑎1 and 𝑎2 correspond to aligners such as bowtie2 [54] and STAR [27].
• 𝑠 corresponds to a read summarizer such as featureCounts [59].
• 𝑐 (uninterestingly) combines two read count vectors into a matrix.
• 𝑏 corresponds to a batch corrector such as ComBat-seq [108].
• 𝑑 corresponds to a differential gene expression test such as DESeq2 [61].

Although Programming by Navigation supports synthesis beyond component-based approaches, our
specific instantiation does not inspect function bodies (nor aim to synthesize them). Therefore, the
implementations of these bioinformatics algorithms can be off-the-shelf, arbitrarily complex, and in
many different languages.

The validity conditions ensure these functions are only called when appropriate. For example, 𝜑1
ensures raw sequencing data is available to perform quantification or alignment, 𝜑4 ensures batch
correction can only be performed once, and𝜑5 states that we can test any read count matrix for differential
gene expression, regardless of whether or not it has been batch corrected.

In all, the 32 different programs correspond to different valid combinations of these bioinformatic
analyses, each of which may be of interest to a biologist analyzing their data depending on the context.
Of particular note is whether or not to use batch correction for a given analysis—a highly contextual and
often-contested decision among biologists [77].

Key Insight 1 (§3). Our first key insight is to design a synthesis problem specifically adapted to
the Particular task. Starting from a blank program, the synthesizer is required to present a set
of valid steps that indicate next possible steps to extend the program, where a valid step is one

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

Programming by Navigation 165:5

σ σ

σ

σ

σ
σA

Select step σ

Valid solution

Invalid space

Invalid step
(not displayed)

Working sketch
Valid step
(displayed) Selected step

New valid step

A

1

2

34

5

1

2

34

5

A
E

D

B σ

σ

B

CC

Round 1 Round 2

New working sketch

Fig. 1. Two rounds of a Programming by Navigation. Round 1: At each round of synthesis, we have

a working sketch (i.e., an in-progress program, depicted as an orange circle), which is initially empty. In

this scenario, there are 5 valid synthesis solutions (depicted as green stars). Given a working sketch, a

Programming by Navigation synthesizer is required to return all steps on paths that lead to valid solutions

(depicted as purple arrows annotated with 𝜎𝐴 , 𝜎𝐵 , and 𝜎𝐶), a property we call Strong Completeness. In

addition, the synthesizer must not return any steps that cannot lead to a valid solution (depicted as arrows

with red crosses), a property we call Strong Soundness. Round 2: We depict the result of selecting the

particular step 𝜎𝐴 (although the others would have been valid to select as well). The step 𝜎𝐴 gets applied

to the previous working sketch, resulting in a new working sketch, and the Programming by Navigation

synthesizer must again return all and only the valid next steps; now 𝜎𝐷 leads to Solution 1 and 𝜎𝐸 leads to

Solution 2.

that can lead to a valid solution. Crucially, we require that this set of steps can lead to all
valid solutions, and that it contains only steps that lead to a valid solution. We call the
requirement that all valid steps be presented Strong Completeness and the requirement that
only valid steps be presented Strong Soundness.2 Strong Completeness enforces that every
valid program is constructible and that each provided set of steps does not eliminate any potential
valid programs. Strong Soundness enforces that all choices at every intermediate stage of the
process lead to a valid solution; synthesis can thus never go down a “rabbit hole” path that leads to
no valid solution. The fact that these two guarantees must hold at each round of interaction is the
key difference between our problem statement and that of other interactive program synthesizers,
as we discuss in Section 10.1.

After the set of all and only valid steps are provided, one of them can be selected to advance to
the next round of synthesis. This process repeats until reaching a valid solution. Figure 1 visually
depicts two rounds of this process.

We also provide a concrete example of a complete interaction in Figure 2, which shows the steps
to reach the 29th solution listed above using “top-down” steps that construct a program from its
root node. The table can be read row-by-row, going from left to right in each row. We start in the
Working Sketch column, which indicates the in-progress program under construction, using holes
(?ℎ) as placeholders to be filled. The Goal column selects one of the holes in the sketch to expand.
The synthesizer is then obligated to return precisely the possible fillings in the Options column and
no others; these represent the exact set of steps that can lead to a valid solution. Simply exploring

2Traditionally, a synthesizer is sound if any program it returns satisfies the specification and complete if it always returns a
program when at least one satisfying solution exists.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

165:6 Justin Lubin, Parker Ziegler, and Sarah E. Chasins

Working Sketch Goal Options Choice
?1 ?1 : 𝐷 𝑑1,2 (?2) 𝑑1,2 (?2)
𝑑1,2 (?2) ?2 : 𝑀 𝑐1,2,⊥ (?3, ?4), 𝑏1,2,⊤ (?3) 𝑏1,2,⊤ (?3)
𝑑1,2 (𝑏1,2,⊤ (?3)) ?3 : 𝑀 𝑐1,2,⊥ (?4, ?5) 𝑐1,2,⊥ (?4, ?5)
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊥ (?4, ?5))) ?4 : 𝑅 𝑞11 (), 𝑞12 (), 𝑞1 (?6) 𝑞1 (?6)
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊥ (𝑞1 (?6), ?5))) ?6 : 𝐴 𝑎11 (), 𝑎12 () 𝑎11 ()
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊥ (𝑞1 (𝑎11 ()), ?5))) ?5 : 𝑅 𝑞21 (), 𝑞22 (), 𝑞2 (?6) 𝑞2 (?6)
𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊥ (𝑞1 (𝑎11 ()), 𝑞2 (?6)))) ?6 : 𝑅 𝑎21 (), 𝑎22 () 𝑎21 ()

Solution: 𝑑1,2 (𝑏1,2,⊤ (𝑐1,2,⊥ (𝑞1 (𝑎11 ()), 𝑞2 (𝑎21 ()))))

Fig. 2. A step-by-step breakdown of Programming by Navigation for the goal type𝐷 ⟨1, 2⟩ and atomic

proposition set {𝑆 (1), 𝑆 (2)}. Each row is one round of synthesis and is read left-to-right. In each round, we

have a working sketch, a goal, and a set of options, which represent all and only the valid next steps. Although

all returned options are acceptable to select, the choice in the final column results in the working sketch at

the start of the next row. The solution at the bottom is the resulting concrete program after these 7 rounds.

the underlying grammar in a type-directed manner is not sufficient to meet this requirement, as the
validity conditions on each function must be met; the options presented must be exactly those with
extensions whose validity conditions are all met. Finally, the Choice column indicates a choice
among these options, which then gets substituted into the working sketch on the next row.

We now have a new question: How can we compute what options are possible at each step of the
above interaction? One immediate solution would be to compute the 32 solutions from before and
store them in a generalized trie data structure [23], but this solution brings us back to exactly the
problem we were trying to avoid: enumerating all solutions is too costly and is in fact impossible
in the case of infinitely many solutions.

Key Insight 2 (§4). We observe that, at each intermediate stage, we do not actually need to
construct all possible valid solutions. It is enough if we are able to determine if a particular type
is inhabited without knowing what that inhabitant actually is. For example, in the second row of
Figure 2, we can check if 𝑏1,2,⊤ (?3) should be included in the set of options by checking if the type
of its argument is inhabited; we do not actually need to know what to map ?3 to. We formalize this
notion in terms of an inhabitation oracle that, given a hole and a possible function 𝑓 to apply, will
determine if the type is inhabited by some expression whose root is 𝑓 .3 Our inhabitation oracle
therefore gives us a “yes” or “no” answer—in the style of classical logic—as to whether or not a
type is inhabited. Our second key insight, then, is that we can turn such a classical-style oracle into
a synthesizer that actually gives us a term inhabiting a type, in the style of constructive logic.

But one final question remains: How can we define such an inhabitation oracle? One such oracle
could be a constructive synthesizer in disguise: simply run a complete Any program synthesizer
on the type, and return “yes” if and only if a solution is found. But this does more work than we
require; it actually constructs a solution when one is not needed.4 Is there some way we can exploit
the leeway given by only needing to return a “yes” or “no” answer to design a faster oracle?

Key Insight 3 (§5). Our final key insight is that we can compile library types into Datalog facts
and library functions into Datalog rules in such a way that a library type is inhabited if and only if
the corresponding fact is derivable. Further, using a variant of cut elimination [36], we can check
3Our type inhabitation oracles are unrelated to input-output oracles in the sense of oracle-guided inductive synthesis
(OGIS) [46]; in OGIS, oracles are used to provide desired outputs to given program inputs for input-output examples.
4We, in fact, implemented this approach and it indeed performed poorly; see Appendix A in the supplementary materials.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

Programming by Navigation 165:7

whether a library type is inhabited with an expression whose root is a particular function, as is
needed for our type inhabitation oracle.5

For example, we compile the 𝑎1, 𝑏, 𝑐 , and 𝑑 functions into the following three rules:

𝑆 (𝑥)
𝐴(𝑥)

(Rule𝑎1)
𝑀 (𝑥,𝑦,⊥)
𝑀 (𝑥,𝑦,⊤)

(Rule𝑏)
𝑅(𝑥) 𝑅(𝑦)
𝑀 (𝑥,𝑦,⊥)

(Rule𝑐)
𝑀 (𝑥,𝑦, 𝑏)
𝐷 (𝑥,𝑦)

(Rule𝑑)

The facts of this Datalog program are exactly the types from our library, and a type is inhabited if
and only if the corresponding fact is derivable. Further, a derivation of a fact can end in Rule𝑓 if
and only if the corresponding type is inhabited by a function application with 𝑓 at its head.
Our inhabitation oracle will be given a hole name ℎ and a possible function 𝑓 and return the

values 𝑣1, . . . , 𝑣𝑁 for which we can replace ?ℎ by some expression starting with 𝑓 𝑣1,...,𝑣𝑁 . We can use
the above Datalog facts and rules to do so by constructing a query rule that holds precisely on such
𝑣1, . . . , 𝑣𝑁 . For example, given an expression 𝑑1,2 (?2) with ?2 : 𝑀 , we can check what values 𝑥,𝑦, 𝑏
of metadata are inhabited by a ground program at ?2 with the following query based on Rule𝑑 :

𝑀 (𝑥,𝑦, 𝑏) 𝑥 = 1 𝑦 = 2
𝑄★(𝑥,𝑦, 𝑏)

(Query)

However, this query is not enough; we specifically need to see which functions we can use as
options in our Programming by Navigation interaction. So, we can specifically check if ?2 can be
inhabited with 𝑏 or 𝑐 functions by cutting the corresponding rules (Rule𝑏 and Rule𝑐) in:
𝑀 (𝑥,𝑦,⊥) 𝑥 = 1 𝑦 = 2 𝑏 = ⊤

𝑄★(𝑥,𝑦, 𝑏)
(Rule𝑏/Query)

𝑅(𝑥) 𝑅(𝑦) 𝑥 = 1 𝑦 = 2 𝑏 = ⊥
𝑄★(𝑥,𝑦, 𝑏)

(Rule𝑐/Query)

The rules Rule𝑏 and Rule𝑐 have essentially been inlined (i.e., cut), so if the resulting queries are
satisfiable, we know that we can construct an equivalent derivation tree where we do use those
rules. These are the queries that we will use for our type inhabitation oracle.
In summary, our Datalog-backed type inhabitation oracle works by compiling the library to

Datalog and checking the derivability of these cut queries.6

Summary. Overall, we design a novel synthesis problem that directly solves the Particular
task (Section 3). We then introduce an algorithm that transforms an inhabitation oracle into a
synthesizer that solves this problem (Section 4). Finally, we use Datalog to efficiently implement an
oracle in a way that does not require that we construct the solutions ahead of time (Section 5).

3 Programming by Navigation

We now introduce the general form of the Programming by Navigation framework. We will begin
by specifying what properties steps must satisfy (Section 3.1) and giving a concrete example of
such steps in the form of top-down program construction (Section 3.1.1). Next, we will state the
Programming by Navigation Synthesis Problem, which—in contrast to prior interactive synthesis
problems—requires that all and only the valid next steps be shown. In Section 3.3, we will show
that, in addition to providing all and only the valid steps at each round of the interactive process,
solutions to the Programming by Navigation Synthesis Problem (i) terminate immediately if there is
no solution, (ii) always progress until a valid solution is found, and (iii) enable all valid expressions
to be constructed using only the provided steps.

5Throughout this paper, we use “cut” in the sense of fusing proofs, not in the sense of stopping backtracking as in Prolog.
6From this perspective, the process in Figure 2 can be viewed as interactively constructing the provenance (i.e., derivation
tree) of our goal fact. By associating facts with types, we can leverage the Curry-Howard correspondence so that proof
trees of these facts correspond to programs satisfying our specification.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

165:8 Justin Lubin, Parker Ziegler, and Sarah E. Chasins

Hole names ℎ, Functions 𝑓
Expressions 𝑒 ::= 𝑓 (𝑒1, . . . , 𝑒𝑁) | ?ℎ

Steps 𝜎 ::= ?ℎ ⇝ 𝑓 (𝑒1, . . . , 𝑒𝑁) | 𝜎1 ; 𝜎2
Step sets Σ ::= {𝜎1, . . . , 𝜎𝑁 } (finite, unordered)

𝑒1
𝜎−→ 𝑒2 𝜎 top-down steps 𝑒1 to 𝑒2

Step/Extend
arity(𝑓) = 𝑁 ?ℎ ⊳ 𝑒

𝑒
?ℎ⇝𝑓 (𝑒1,...,𝑒𝑁)−−−−−−−−−−−−→ [?ℎ ↦→ 𝑓 (𝑒1, . . . , 𝑒𝑁)]𝑒

Step/Seq
𝑒

𝜎1−→ 𝑒′ 𝑒′
𝜎2−→ 𝑒′′

𝑒
𝜎1 ;𝜎2−−−−→ 𝑒′′

Fig. 3. A Concrete Instantiation of Programming by Navigation. We assume that each function 𝑓

has a fixed arity arity(𝑓) and write 𝑒1 ⊳ 𝑒2 if 𝑒1 is a subterm of 𝑒2. These steps model a top-down program

construction process (Step/Extend replaces a hole with a function application and Step/Seq sequences steps),

but other sets of steps that satisfy the properties of a navigation relation (Definition 3.1) are equally valid.

3.1 Expressions and Steps

Programming by Navigation requires a notion of expressions 𝑒 and steps 𝜎 as well as a relation
𝑒1

𝜎−→ 𝑒2 that holds if𝜎 transforms 𝑒1 to 𝑒2. Additionally, it requires a notion of validity on expressions
(notated 𝑒 valid); this validity could be satisfying input-output examples, logical specifications, type
checking, or something else entirely. The following central definition captures precisely what kinds
of expressions and steps are permissible for Programming by Navigation.

Definition 3.1. Suppose 𝑒 valid is a validity condition on expressions. Let 𝑒1
𝜎−→ 𝑒2 be a relation on

expressions 𝑒1, 𝑒2 and steps 𝜎 , and let 𝑒1 ≺ 𝑒2 hold if and only if 𝑒1
𝜎−→ 𝑒2 for some 𝜎 . Then 𝑒1

𝜎−→ 𝑒2
is a navigation relation if it satisfies the following four properties.

(1) Determinism: There is at most one 𝑒′ for each 𝑒 and 𝜎 such that 𝑒
𝜎−→ 𝑒′.

(2) No Loops: ≺ is a strict partial order.
(3) Reachability: There exists a lower bound 𝑒start on the set of valid expressions.
(4) Finite Between: Every infinite ascending chain 𝑒0 ≺ 𝑒1 ≺ · · · is unbounded.7

We write 𝑒 ⊢ 𝜎 if there exists 𝑒′ such that 𝑒
𝜎−→ 𝑒′. When 𝑒 ⊢ 𝜎 , we define 𝜎𝑒 to be the unique such 𝑒′.

We write 𝑒 ⊢ Σ for a step set Σ if 𝑒 ⊢ 𝜎 for all 𝜎 ∈ Σ.

Determinism ensures that steps are deterministic. No Loops ensures that a sequence of steps
will never loop back to a previously-explored expression (including by having no effect on an
expression). Reachability ensures that a notion of a “blank program” (𝑒start) exists from which
every valid expression is reachable via some sequence of steps. Finally, Finite Between ensures
that it is impossible to take infinitely many steps between any two expressions. Subject to these
constraints, any notion of expressions and steps will suffice.

3.1.1 A Concrete Instantiation. In Figure 3, we provide one possible choice of expressions and
steps—modeling a top-down approach to program construction—that we will use later in the paper
as an instantiation of the Programming by Navigation framework. With these steps, we could, for
example, model the following program construction sequence:

?0
?0⇝𝑝 (𝑞 (),?1)−−−−−−−−−−→ 𝑝 (𝑞(), ?1)

?1⇝𝑟 (?2) ; ?2⇝𝑠 ()
−−−−−−−−−−−−−−→ 𝑝 (𝑞(), 𝑟 (𝑠 ())) .

7Put another way, ≺ is Noetherian (satisfies the ascending chain condition) on the principal ideal of 𝑒 for all expressions 𝑒 .

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

Programming by Navigation 165:9

We take 𝑒start = ?0 and require that 𝑒 valid not hold on incomplete programs (programs with holes).
We also require hole names to be unique in expressions. The following theorem establishes that
these steps are valid to use in the Programming by Navigation framework.8

Theorem 3.2. The top-down step relation is a navigation relation.

We emphasize that these are not the only possible steps to use; the remainder of this section
applies to any notion of steps that satisfies the properties in Definition 3.1. Other kinds of steps—
such as those capable of capturing a bottom-up or middle-out process of construction—would be
equally valid to slot into this framework if a suitable analogue of Theorem 3.2 can be proven.

3.2 Programming by Navigation Synthesis Problem

With a proper notion of steps established, we can now formalize the exact requirements of a
Programming by Navigation synthesizer. We model Programming by Navigation synthesizers as
step providers, defined as follows.

Definition 3.3. A step provider S maps expressions to step sets. An S-interaction is a finite
sequence 𝑒0

𝜎1−→ · · · 𝜎𝑁−−→ 𝑒𝑁 such that 𝑒0 = 𝑒start and 𝜎𝑘+1 ∈ S(𝑒𝑘) for all 0 ≤ 𝑘 < 𝑁 .

Intuitively, an S-interaction is a sequence of expressions where each one is the result of applying a
step provided by S to the previous expression.

We also introduce notation for the set of valid expressions that are reachable from an expression.

Definition 3.4. The completion of an expression 𝑒 is C(𝑒) = {𝑒′ | 𝑒 ⪯ 𝑒′ ∧ 𝑒′ valid}.

In general, the completion of an expression can be infinite, so completions are not computable in
practice. Rather, we will use completions to describe the theoretical guarantees and requirements
of Programming by Navigation synthesizers. Indeed, we can now precisely state what properties
the set of steps returned by a Programming by Navigation synthesizer must satisfy.

Definition 3.5. A step set Σ covers an expression 𝑒 if it satisfies the following three properties.
(1) Validity: 𝑒 ⊢ Σ.
(2) Strong Completeness:

⋃
𝜎∈Σ C(𝜎𝑒) ⊇ C(𝑒) \ {𝑒}.

(3) Strong Soundness: C(𝜎𝑒) ≠ ∅ for all 𝜎 ∈ Σ.

Validity ensures that all steps in Σ actually do something to 𝑒 . Strong Completeness ensures
that every valid program that was reachable from 𝑒 is still reachable from at least one of the steps
in Σ.9 Strong Soundness ensures that all steps in Σ lead to at least one valid solution.

Finally, we can state the Programming by Navigation Synthesis Problem.

Problem Statement

Definition 3.6. A step provider S solves the Programming by Navigation Synthesis
Problem if S(𝑒𝑁) covers 𝑒𝑁 for all S-interactions 𝑒0

𝜎1−→ · · · 𝜎𝑁−−→ 𝑒𝑁 .

Figure 4 illustrates how a Programming by Navigation step provider can be used to navigate
to a particular program. Intuitively, the step provider and step decider can be thought of as
communicating coroutines. Starting with a blank program, 𝑒start, the step provider provides a set of
steps that covers the current working sketch. The step decider is free to choose among any of these
8For concision, we provide all proofs in Appendix B in the supplementary materials.
9The left-hand side in Strong Completeness is a (non-strict) subset of the right-hand side by Validity.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

165:10 Justin Lubin, Parker Ziegler, and Sarah E. Chasins

Step Provider

Step Decider

Σ Σ Σσ σ . . . σ0 1 1 2 N–1 N

Fig. 4. A step provider and step decider communicate to arrive at a particular valid solution. The step

provider is obligated to give a set Σ𝑖 of steps that covers the working sketch at each stage (Definition 3.5). The

step decider chooses 𝜎𝑖+1 ∈ Σ𝑖 (all of which are valid), which gets applied to working sketch. The resulting

new sketch is fed back to step provider, and the process repeats until a valid program is constructed.

steps to be applied to the working sketch; none lead to a dead end. This updated sketch is then sent
back to the step provider, and the process is repeated until reaching a particular valid program.
Figure 2 gives an example interaction of the concrete instantiation we describe in Section 3.1.1.

This process is a form of specification refinement in that the set of programs satisfying the speci-
fication gets smaller at each round until the single particular program is left: C(𝑒0) ⊇ C(𝑒1) ⊇ · · · .
Strong Soundness ensures that these refined specifications never collapse into unsatisfiability.

3.3 Properties of Programming by Navigation

We now discuss the properties that all Programming by Navigation synthesizers S offer.
First, we note that Strong Soundness means that it is impossible for a step choice to flip a

satisfiable specification into an unsatisfiable one. The following theorem captures the additional
property that, if a specification is unsatisfiable, the Programming by Navigation process will
immediately terminate.

Theorem 3.7 (Fail Fast). If there are no valid expressions, then S(𝑒start) = ∅.

Furthermore, at each step of a Programming by Navigation interaction, either the current working
sketch is a valid solution (and the interaction can finish) or the Programming by Navigation
synthesizer will provide additional steps. This theorem is analogous to the traditional progress
theorem of the 𝜆-calculus [104].

Theorem 3.8 (Progress). If there is at least one valid expression and 𝑒0
𝜎1−→ · · · 𝜎𝑁−−→ 𝑒𝑁 is an

S-interaction, then either 𝑒𝑁 valid or S(𝑒𝑁) ≠ ∅ (or both).

Finally, when we defined a navigation relation in Definition 3.1, we required all valid programs
be reachable via some series of steps from the starting program (Reachability). What the
following theorem establishes is that it is possible to construct any valid expression using only

the steps provided by a Programming by Navigation synthesizer. This theorem is analogous to
Omar et al. [78]’s constructability theorem for the Hazelnut structure editor calculus.

Theorem 3.9 (Constructability). If 𝑒 valid, there exists an S-interaction 𝑒0
𝜎1−→ · · · 𝜎𝑁−−→ 𝑒 .

4 Classical–Constructive Synthesis

We now describe our solution to the concrete instantiation of Programming by Navigation from
Section 3.1.1. As we discuss in Section 2, we rely crucially on the notion of an inhabitation oracle,
which, for each pair of a hole and a function, must determine if the hole can be extended by the
function. (Later, when we model types in Section 5.1, this will correspond to checking whether

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

Programming by Navigation 165:11

Algorithm 1 Top–Down Classical–Constructive Synthesis
Parameter: An inhabitation oracle O (Definition 4.1)
Input: An expression 𝑒

Output: A step set
1: procedure S(𝑒)
2: for (ℎ, 𝑓) ∈ O(𝑒) do
3: ?ℎ1 , . . . , ?ℎarity(𝑓) ← fresh(𝑒)
4: yield (?ℎ ⇝ 𝑓 (?ℎ1 , . . . , ?ℎarity(𝑓)))

certain types are inhabited.) A function can only replace a hole if there exists a valid expression
that is reachable from the resulting expression, as captured in the following definition.

Definition 4.1. An expansion is a hole name and function pair. An inhabitation oracle O maps
expressions 𝑒 to finite sets of expansions that include (ℎ, 𝑓) if and only if

?ℎ ⊳ 𝑒 and C([?ℎ ↦→ 𝑓 (?ℎ1 , . . . , ?ℎarity(𝑓))]𝑒) ≠ ∅ for ?ℎ1 , . . . , ?ℎarity(𝑓) fresh in 𝑒.

An inhabitation oracle tells us whether a certain expansion is possible—a “yes” or “no” response,
in the style of classical logic—but it does not construct a solution. However, we can use it as part of
a step provider to solve the Programming by Navigation Synthesis Problem. This is precisely what
we do in Algorithm 1. By construction, the steps from Algorithm 1 satisfy Validity and Strong
Soundness when it is used as a Programming by Navigation synthesizer. It turns out that these
steps are sufficiently broad to ensure Strong Completeness as well. Consequently:

Theorem 4.2 (Soundness). Algorithm 1 solves the Programming by Navigation Synthesis Problem.

5 Datalog-Backed Inhabitation Oracle

We now turn to the task of implementing an inhabitation oracle. To do so, we start in Section 5.1
by formalizing the particular notion of validity we used in Section 2; we note, however, that
Algorithm 1 is a Programming by Navigation synthesizer regardless of the notion of validity chosen.
We then show in Section 5.2 that we can define an inhabitation oracle for this notion of validity
using Datalog that does not require constructing full solutions to synthesis subtasks.

Throughout this section, we use the notational shorthand 𝑋 = 𝑋1, . . . , 𝑋𝑁 for some 𝑁 .

5.1 Formalizing Validity

Figure 5 defines the syntax we used for validity in Section 2. We call this syntax HBcore, as it is the
core syntax of Honeybee, our implementation of Programming by Navigation that we evaluate
in Section 7. As in Section 2, types and atomic propositions are parameterized by values, and the
set of functions for this instantiation is drawn from a set of base functions coupled with output

metadata, a tuple of values notated with a superscript. Function signatures are annotated with
formulas, which can be true (⊤), equality relations, less-than relations, atomic propositions, or a
conjunction of other formulas. For notational simplicity, all values are numeric, but the type system
could be extended to handle other types such as strings (as we do in our actual implementation) or
enumerations. Lastly, we assume a fixed arity map arity(·) for atomic propositions and types and,
for auxiliary technical reasons later, a distinguished type 𝜏★ with arity 0.

Figure 6 defines what it means for an expression to be well-typed with the rule Well-Typed/Fun.
In addition to having the types of arguments match the types of the corresponding function
parameters (premises 1 and 4), all validity conditions of the functions present in an expression
must be satisfied (premise 3). For tractability, we additionally require that all values be literals

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

165:12 Justin Lubin, Parker Ziegler, and Sarah E. Chasins

Values 𝑣 ∈ Z Base functions 𝑓
Functions 𝑓 𝑣 Type names 𝜏
Atomic proposition names 𝛿

Types 𝜏 (𝑣)
Atomic propositions 𝛿 (𝑣)

Formula atoms 𝑎 ::= param𝑖, 𝑗 | ret𝑗 | 𝑣
Formulas 𝜑 ::= ⊤ | 𝑎 = 𝑎 | 𝑎 < 𝑎

| 𝛿 (𝑎) | 𝜑 ∧ 𝜑

Function libraries Γ ::= {𝑓𝑖 ↦→ (𝜏𝑖 →𝜑𝑖
𝜏𝑖)}𝑁𝑖=1

Fig. 5. HBcore, the core syntax of Honeybee.Of

note, functions 𝑓 𝑣 are coupled with output meta-

data (tuples of values) that constrain their type.

Γ,Δ ⊢ 𝑒 : 𝜏 (𝑣) 𝑒 has type 𝜏 (𝑣) with library Γ

assuming atomic propositions Δ

Well-Typed/Fun
Γ(𝑓) = 𝜏1, . . . , 𝜏𝑁 →𝜑 𝜏

∀𝑖, 𝑗 . 𝑣𝑖 𝑗 ∈ vals(Γ) ∪ vals(Δ) ∪ vals(𝑣)
Δ |= 𝜑 [𝑣1, . . . , 𝑣𝑁 ; 𝑣]
∀𝑖 . Γ,Δ ⊢ 𝑒𝑖 : 𝜏𝑖 (𝑣𝑖)

Γ,Δ ⊢ 𝑓 𝑣 (𝑒1, . . . , 𝑒𝑁) : 𝜏 (𝑣)

Fig. 6. The typing relation for HBcore. Function appli-

cations are well-typed if their arguments are well-typed

and have metadata satisfying the validity condition. The

notation vals(𝑋) returns the set of values in 𝑋 .

that appear in the library or synthesis problem (premise 2). As Well-Typed/Fun applies only to
function applications, incomplete programs (those with holes) are not considered well-typed.

We now formalize the up-front specification from Section 2.

Definition 5.1. An HBcore problem is a triple (Γ,Δ, 𝜏 (𝑣)) where Γ is a function library to use,
Δ is a set of atomic propositions assumed to be true, and 𝜏 (𝑣) is a goal type. For a fixed HBcore

problem (Γ,Δ, 𝜏 (𝑣)), we say 𝑒 valid if Γ,Δ ⊢ 𝑒 : 𝜏 (𝑣).
We now need an oracle that, given an 𝑒 as defined above, can determine if an expansion of

it is well-typed according to Well-Typed/Fun in Figure 6. For example, if we have the expres-
sion 𝑓 1 (𝑔2 (), ?1, ?2) and we are considering expanding ?1 with 𝑓 , we need to determine if there
exist expressions 𝑒1, 𝑒2, 𝑒3, 𝑒4, and a value 𝑣 such that 𝑓 1 (𝑔2 (), 𝑓 𝑣 (𝑒1, 𝑒2, 𝑒3), 𝑒4) is well-typed. We
essentially want to extend the Well-Typed/Fun rule so that the fourth premise allows for the
possibility that 𝑒𝑖 is a hole, in which case it would require that there exists some 𝑒′𝑖 that can replace
it that is well-typed instead. The key difficulty is that this change makes type-checking highly
non-syntax-directed, essentially amounting to program search. Thus, we would like to be able to
make this check without actually constructing such an expression 𝑒′𝑖 to replace the hole with.

5.2 Compiling to Datalog

To construct such an oracle for anHBcore problem (consisting of a library, set of atomic propositions,
and goal type), we compile the problem to a Datalog program in which atomic propositions are the
EDBs, types are the IDBs, and functions between the types get compiled to rules. We perform this
compilation in such a way that a type is inhabited if and only if the corresponding Datalog fact is
derivable. In fact, the key invariant (Lemma 5.4) that we maintain will be slightly stronger, asserting
that a type is inhabited with an expression whose root is 𝑓 if and only if the corresponding Datalog
fact is derivable with a proof tree ending in the Datalog rule corresponding to 𝑓 .

We first describe the notation we use to refer to Datalog (the technical content is standard).

Definition 5.2. ADatalog program is a triple (V, E,R), whereV is a value domain, E is a set of
EDBs (ground facts), and R is a set of rules to derive IDBs (derived facts). For simplicity, we assume
Datalog programs have EDBs corresponding to atomic propositions and IDBs corresponding to types
from Section 5.1, as well as a distinguished fact𝑄★ used only for queries. The Datalog provability
relationV, E,R ⊢DL 𝐼 (𝑣) over Datalog programs (V, E,R) with 𝐼 an IDB and 𝑣1, . . . , 𝑣𝑁 ∈ V holds
if and only if 𝐼 (𝑣) is derivable using the rules from R assuming the EDBs E are true and all values

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

Programming by Navigation 165:13

are drawn fromV . Lastly, a Datalog engine DL takes in a Datalog program (V, E,R) and query
rule 𝑅 with head 𝑄★ and returns all tuples of values 𝑣 such thatV, E,R ∪ {𝑅} ⊢DL 𝑄★(𝑣).

We now define how to compile an HBcore problem to Datalog. We start with setting up rules that
establish when types are inhabited (i.e., general versions of the Rule𝑓 rules from Section 2). We
call these rules the Datalog header of a function library, as they will be included in all calls to the
Datalog engine throughout the synthesis procedure.

Definition 5.3 (Datalog Compilation, Part 1/2). The Datalog header of a function library Γ is

H⟦Γ⟧ =
{
𝜏1 (𝑥1) · · · 𝜏𝑁 (𝑥𝑁) 𝜑 [𝑥1, . . . , 𝑥𝑁 ;𝑥]

𝜏 (𝑥)
(Rule𝑓) | Γ(𝑓) = 𝜏1, . . . , 𝜏𝑁 →𝜑 𝜏

}
.

This definition enables us to prove the following key invariant that links type inhabitation with
Datalog fact derivability.

Lemma 5.4 (Key Invariant I). The following are equivalent:
(1) vals(Γ) ∪ vals(Δ),Δ,H⟦Γ⟧ ⊢

DL
𝜏 (𝑣) with a derivation tree ending in Rule𝑓 .

(2) There exist expressions 𝑒1, . . . , 𝑒𝑁 such that Γ,Δ ⊢ 𝑓 𝑣 (𝑒1, . . . , 𝑒𝑁) : 𝜏 (𝑣).
Notably, in (1), Datalog can prove that a certain type is inhabited without searching for the witness

expressions in (2); this is precisely the benefit we get by requiring only a “yes” or “no” answer.
Now, given an expression like 𝑓 1 (𝑔2 (), ?1, ?2) and goal ?1, we need a query rule that returns

all 𝑣 such that there exist expressions 𝑒1 (with metadata 𝑣) and 𝑒2 that can replace ?1 and ?2 to
make the expression well-typed (i.e., a general version of the Query rule from Section 2). This rule
should check (i) the types of all hole siblings of ?1 (including the type of ?1 itself) are inhabited
with metadata values that satisfy the validity condition of 𝑓 on its arguments, and (ii) the function
siblings (e.g., 𝑔2 ()) recursively satisfy this property. The following definition achieves this goal.

Definition 5.5 (Datalog Compilation, Part 2/2). The set of Datalog queries of an expression 𝑒

given a function library Γ and expected type 𝜏 is

QΓ,𝜏⟦𝑒⟧ =
{
P ·Γ,𝜏⟦𝑒⟧
𝑄★(𝑥𝑝)

(Queryℎ,𝑘) | ?ℎ ⊳ 𝑒 at path 𝑝 and 𝜏 ′ (𝑥𝑝) is the 𝑘th premise

}
where the premises are defined by

P𝑝

Γ,𝜏⟦?ℎ⟧ = 𝜏 (𝑥𝑝) and P𝑝

Γ,𝜏⟦𝑓
𝑣 (𝑒1, . . . , 𝑒𝑁)⟧ = (𝑥𝑝 = 𝑣) ∧ 𝜑 [𝑥𝑝,1, . . . , 𝑥𝑝,𝑁 ;𝑥𝑝] ∧

𝑁∧
𝑖=1
P𝑝,𝑖

Γ,𝜏𝑖
⟦𝑒𝑖⟧

for Γ(𝑓) = 𝜏1, . . . , 𝜏𝑁 →𝜑 𝜏 .

Intuitively, the Queryℎ,𝑘 rule for an expression 𝑒 will hold on 𝑣 if and only if there exists an
expression 𝑒′ with metadata value 𝑣 to replace ?ℎ such that all validity conditions either hold or can
hold with further expansions. We use Lemma 5.4 to prove the following additional key invariant
that captures this idea more formally.

Lemma 5.6 (Key Invariant II). Suppose ?ℎ ⊳ 𝑒 . Then the following are equivalent:

(1) Queryℎ,𝑘 ∈ QΓ,𝜏⟦𝑒⟧ and vals(Γ) ∪ vals(Δ),Δ,H⟦Γ⟧∪ {Queryℎ,𝑘 } ⊢DL 𝑄★(𝑣) with a derivation
tree whose 𝑘th subtree ends in Rule𝑔.

(2) There exist expressions 𝑒1, . . . , 𝑒𝑁 such that C([?ℎ ↦→ 𝑔𝑣 (𝑒1, . . . , 𝑒𝑁)]𝑒) ≠ ∅.
As before, in (1), Datalog can prove that a hole can be replaced with a well-typed function

application without searching for the witness expressions in (2). However, there is one final challenge:
To make these queries into an oracle, we need to be able to check for specific choices of 𝑔.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

165:14 Justin Lubin, Parker Ziegler, and Sarah E. Chasins

Algorithm 2 Datalog-Backed Inhabitation Oracle
Parameter: A Datalog engine DL (Definition 5.2)
Parameter: An HBcore problem (Γ,Δ, 𝜏 (𝑣goal))
Input: An expression 𝑒

Output: A finite set of expansions
1: procedure O(𝑒)
2: Γ′ ← Γ ∪ {goal ↦→ (𝜏 →(param1,1=𝑣goal,1∧···∧param1,𝑁 =𝑣goal,𝑁) 𝜏

★)}
3: forQueryℎ,𝑘 ∈ QΓ′,𝜏★⟦goal() (𝑒)⟧ do
4: for Rule𝑓 ∈ H⟦Γ⟧ do
5: if Rule𝑓 not 𝑘-compatible with Queryℎ,𝑘 then continue
6: for 𝑣 ∈ DL((vals(Γ′) ∪ vals(Δ),Δ,H⟦Γ⟧), Rule𝑓 /𝑘/Queryℎ,𝑘) do
7: yield (ℎ, 𝑓 𝑣)

We can force 𝑔 to be a specific function by using the notion of a logical cut, as defined below.
Using a cut, we can control exactly what the final derivation rule of a type is going to be, and thus,
by Lemma 5.4, what the function at the head is going to be.

Definition 5.7 (Cut). Suppose 1 ≤ 𝑘 ≤ 𝑁 and consider the Datalog rules
𝑃1 (𝑥1) · · · 𝑃𝑀 (𝑥𝑀)
𝜑𝑃 [𝑥1, . . . , 𝑥𝑀 ;𝑥]

𝑃 (𝑥)
(𝑅1) and

𝑄1 (𝑦1) · · · 𝑄𝑁 (𝑦𝑁)
𝜑𝑄 [𝑦1, . . . , 𝑦𝑁 ;𝑦]

𝑄 (𝑦)
(𝑅2),

where the IDB premises of 𝑅1 are 𝑃1, . . . , 𝑃𝑀 and the IDB premises of 𝑅2 are 𝑄1, . . . 𝑄𝑁 . If 𝑃 = 𝑄𝑘 ,
we say 𝑅1 is 𝑘-compatible with 𝑅2, and the 𝑘-cut of 𝑅2 with 𝑅1 is the rule

𝑄1 (𝑦1) · · · 𝑄𝑘−1 (𝑦𝑘−1) 𝑃1 (𝑥1) · · · 𝑃𝑀 (𝑥𝑀) 𝑄𝑘+1 (𝑦𝑘+1) · · · 𝑄𝑁 (𝑦𝑁)
𝜑𝑃 [𝑥1, . . . , 𝑥𝑀 ;𝑥] 𝜑𝑄 [𝑦1, . . . , 𝑦𝑁 ;𝑦] 𝑦𝑘 = 𝑥

𝑄 (𝑦)
(𝑅1/𝑘/𝑅2).

To establish correctness of this approach, we prove the following analogue of cut elimination [36].

Lemma 5.8. Let 𝑅1 and 𝑅2 be as above. Then 𝑣 satisfies the query rule 𝑅2 with a derivation tree

whose 𝑘th subtree ends in 𝑅1 if and only if 𝑣 satisfies the query rule 𝑅1/𝑘/𝑅2.

We can now assemble these three parts—Datalog headers, Datalog queries, and cut—in Algo-
rithm 2. First, we wrap the input expression 𝑒 in a function goal whose validity condition enforces
that the output type has the right metadata (and whose output type uses the auxiliary type 𝜏★ we
mentioned earlier). Then, we loop through each of the queries of 𝑒 (one per hole). If we did not
need to determine precisely which function to use for a hole expansion, we could simply run the
Datalog engine on these queries. But, since we must determine which functions, specifically, are
valid expansions, we loop through all rules in the header (one per function in the library), and take
only those that are compatible with the query at the position of the hole. This amounts to taking
the functions whose return type is the required parameter type. Finally, we run the Datalog engine
on the cut of the query with each matching header rule to determine for which values (if any) it is
possible to extend the expression at the given hole using the given function.
By using Lemma 5.6, we can prove the following theorem that finishes our solution to the

Programming by Navigation Synthesis Problem.

Theorem 5.9. Algorithm 2 is an inhabitation oracle.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

Programming by Navigation 165:15

6 Implementation

We implemented Programming by Navigation for HBcore using Algorithms 1 and 2 in a system
called Honeybee in approximately 2,300 lines of Rust code. We used the egglog library [109]
without any equality saturation features for our Datalog engine, although our algorithm (and
implementation) is agnostic to the underlying Datalog engine.
One benefit of using a Datalog-backed oracle is that some standard program synthesis opti-

mizations fall out of existing Datalog engines essentially for free. For example, as we will see in
Section 7.3, repeated calls to a Datalog engine can be optimized by simply not discarding derived
facts from previous runs. This amounts to the synthesis optimization of subtask memoization, in
which synthesis results from recursive calls to the synthesizer are retained. Although egglog does
not currently support it, another applicable off-the-shelf Datalog optimization is the magic sets
optimization [9], which would correspond to the synthesis optimization of top-down enumeration.

Remark 6.1. We implement one additional optimization. Honeybee only needs to check a subset
of query premises at each step. Specifically, it can (non-recursively) check only the premises in
Definition 5.5 that arise from the target’s parent expression and the parent’s immediate children.
This is because Datalog has already checked the other premises in prior rounds of Algorithm 1.

7 Evaluation

To evaluate Honeybee as an instantiation of Programming by Navigation, we were most interested
in the following two research questions:
RQ1 How well does Honeybee solve the Programming by Navigation Synthesis Problem?
RQ2 How does Honeybee scale with problem size?
Although they are not our main focus, we were also curious to explore the following two additional
research questions for further empirical context:
RQ3 What effect does using off-the-shelf Datalog memoization have on performance?
RQ4 How does Honeybee perform on the traditional Any task?
As the Programming by Navigation Synthesis Problem and our instantiation of the framework

for the top-down setting are both novel, there is no existing benchmark that we can evaluate our
approach on. We therefore constructed three suites of types and functions for this evaluation:
(1) Fin, which consists of 13 problems with finitely many solutions. Two of these are biological

analysis tasks, one of which is a slight extension of the Section 2 example, and one of which
models analyzing data from a pooled CRISPR screen [16, 91, 101]. The remainder are generic,
in the style of the example from Section 2 but with no particular domain encoded.

(2) Inf, which consists of 8 problems with infinitely many solutions. Three of these are geospa-
tial analysis tasks, one of which is to compuate a normalized difference vegetation index
(NDVI) [89] using imagery from the Landsat-9 satellite [69], and two of which perform raster
geoprocessing operations, including warping (reprojection), resampling, and clipping with
vector masks. The remainder are generic.

(3) Scal, which consists of programmatically-generated problems that differ only in the depth
and breadth of their search space.

Each entry in these suites consists of an HBcore problem (a library, set of atomic propositions, and
goal type) as well as a fixed set of 10 particular programs that are solutions to the problem (or all
solutions if there are less than 10). These solutions are the particular programs that a synthesizer
must return to solve the Programming by Navigation Synthesis Problem (but not the Any task).
We evaluate Honeybee by taking the median of 10 measurements of execution time per HBcore

problem—one for each particular program. Each step in the interactive synthesis process is chosen

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

165:16 Justin Lubin, Parker Ziegler, and Sarah E. Chasins

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

Ti
m

e
ta

ke
n

(s
)

0 2 4 6 8
Count

Naïve Enumeration
(1/13 solved)

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

Ti
m

e
ta

ke
n

(s
)

0 2 4 6 8
Count

Pruned Enumeration
(7/13 solved)

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

Ti
m

e
ta

ke
n

(s
)

0 2 4 6 8
Count

Honeybee
(13/13 solved)

Fig. 7. Completion rates for benchmarks with finitely many solutions (the Fin suite). Honeybee solves

the most (13/13), followed by Pruned Enumeration (7/13), and lastly Naïve Enumeration (1/13).

programmatically based on the particular program at hand. Each time measurement is the median
of 5 identical runs of the synthesizer. We emphasize that these Honeybee measurements are total
synthesis time, not time per round.
We constructed these 10 particular programs for each entry once, ahead-of-time, in one of two

ways. For Fin, Scal, and all but one of the generic benchmarks from Inf, we ran Honeybee on each
synthesis problem and selected from among the provided steps at each round uniformly at random,
and recorded the first 10 unique programs found. For one of the generic benchmarks and all of the
geospatial benchmarks in Inf, this random sampling procedure did not terminate, so we manually
navigated to 10 unique programs.

To contextualize our results, we also implemented two baseline algorithms, Naïve Enumeration
and Pruned Enumeration. To solve the Programming by Navigation Synthesis Problem, these
baseline algorithms enumerate all solutions to the synthesis task. Therefore, they are only applicable
to the Fin and Scal suites, as the Inf problems have infinitely many solutions. Both Naïve Enu-
meration and Pruned Enumeration explore the search space in a breadth-first fashion and check
candidate solution validity post hoc. The difference between the two is that Pruned Enumeration
additionally attempts to prune the synthesis space during exploration by not considering paths
that violate an existing validity condition in the candidate solution. As these baseline algorithms
do not take into consideration a particular program, we simply take the median execution time of 5
identical runs of the synthesizer per entry in the benchmark.
We ran the evaluation on a system running Ubuntu 20.04.6 LTS with an Intel Xeon E5-2650 v2

CPU at 2.60 GHz and 64 GB of RAM. All synthesis tasks had a time cutoff of 2 minutes. All system
implementations are single-threaded, so the evaluation ran entirely on one CPU core.

7.1 RQ1 Results: Honeybee Solves Benchmarks Impossible or Too Large for Baselines

Figure 7 shows the results of running the algorithms on the Fin suite. Naïve Enumeration solves
1/13 of the benchmarks, Pruned Enumeration solves 7/13, and Honeybee solves all 13/13.

Figure 8 shows the results of running Honeybee on the Inf suite. As mentioned above, neither
Naïve Enumeration nor Pruned Enumeration can solve these benchmarks because it is im-
possible to enumerate all solutions. Honeybee solves 8/8 of the benchmarks with infinitely many
solutions in a similar amount of time to the entries from the Fin suite.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

Programming by Navigation 165:17

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ti
m

e
ta

ke
n

(s
)

0 1 2 3 4
Count

Honeybee
(8/8 solved)

Fig. 8. Completion rates for

benchmarks with infinitely
many solutions (the Inf

suite). Due to the requirement

of Strong Completeness,

techniques based on exhaustive

enumeration cannot solve these

benchmarks. Honeybee solves 8/8

benchmarks.

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

0 1 2 3 4 5 6 7 8 9 10
Depth of search space

(for breadth = 5)

0.00

0.25

0.50

0.75

1.00

Ti
m

e
ta

ke
n

(s
)

0 1 2 3 4 5 6 7 8 9 10
Breadth of search space

(for depth = 5)

0.00

0.25

0.50

0.75

1.00

Ti
m

e
ta

ke
n

(s
)

Naïve Enumeration Pruned Enumeration Honeybee

Fig. 9. Time to solve the scalability benchmarks (the Scal suite).

The chart on the left shows execution time as we hold the breadth of

the search space constant at 5 and vary depth from 1–10. The chart on

the right shows execution time as we hold the the depth of the search

space constant at 5 and vary breadth from 1–10. On small programs,

the Naïve Enumeration and Pruned Enumeration perform better than

Honeybee due to the overhead of Programming by Navigation, but—

unlike Honeybee—they do not scale to larger problems.

7.2 RQ2 Results: Honeybee Scales to Large Problems While Naïve Enumeration and

Pruned Enumeration Solve Smaller Problems Faster

Figure 9 shows the results of running the algorithms on the Scal suite. We varied the depth of the
search space from 1 to 10 while keeping the breadth fixed at 5. Similarly, we varied the breadth of
the search space from 1 to 10 while keeping the depth fixed at 5.
We observe that Honeybee scales linearly with the depth of the search space. This is expected

of these benchmarks: a depth of 𝑁 requires 𝑁 calls to the oracle. Honeybee’s performance is not
substantially affected by search space breadth at these scales; depth has a much larger impact.
Neither Naïve Enumeration nor Pruned Enumeration scale well with either the depth or

breadth of the search space. However, for small tasks, the overhead of Programming by Navigation
dominates the runtime. Additionally, for these simple scalability tasks, pruning overhead causes
Pruned Enumeration to be slightly slower than Naïve Enumeration.

7.3 RQ3 Results: Honeybee Benefits From Off-The-Shelf Memoization

To see the impact of an off-the-shelf Datalog optimization on Honeybee’s performance, we created
an ablated version of Honeybee that does not use the off-the-shelf memoization optimization
we describe in Section 6. Figure 10 shows the results of running these two synthesizers on all
benchmarks from all benchmark suites (Fin, Inf, and Scal). We use all benchmarks from all three
benchmark suites, filtered only based on which benchmarks the slower ablated Honeybee can
solve. On the 37/40 benchmarks that the ablated version completed, the full version was always
faster, with a median speedup of approximately 6.9×.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

165:18 Justin Lubin, Parker Ziegler, and Sarah E. Chasins

0 5 10 15 20 25
Honeybee (Ablation)

Time taken (s)

0

5

10

15

20

25

H
on

ey
be

e
(F
ul
l)

Ti
m

e
ta

ke
n

(s
)

Ablation better (0/37)

Full better (37/37)

Fig. 10. Inhabitation oracle perfor-

mance with and without off-the-

shelf Datalog memoization. The

𝑦-axis shows time to solve bench-

marks with memoization (full Hon-

eybee), and the 𝑥-axis shows time to

solve benchmarks without memoiza-

tion (ablated Honeybee). Full Honey-

bee solves all benchmarks faster.

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

Ti
m

e
ta

ke
n

(s
)

0 3 6 9 12
Count

Naïve Enumeration
(13/21 solved)

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

Ti
m

e
ta

ke
n

(s
)

0 3 6 9 12
Count

Pruned Enumeration
(15/21 solved)

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

Ti
m

e
ta

ke
n

(s
)

0 3 6 9 12
Count

Honeybee
(14/21 solved)

Fig. 11. Completion rates for benchmarks from the Fin and Inf

suites on the Any task, for which Programming by Navigation

was not designed. Pruned Enumeration solves the most (15/21),

followed by Honeybee (14/21), then Naïve Enumeration (13/21). As a

consequence of satisfying Strong Completeness, Honeybee does

not perform as well on the Any task as it does on the Particular

task, as we discuss in Section 7.4.

7.4 RQ4 Results: On the Any Task, Honeybee Performs Comparably to Baselines

Programming by Navigation was not designed to solve the Any task. Nevertheless, we were
interested in what overhead the Programming by Navigation approach would entail when used to
solve the Any task rather than the Programming by Navigation Synthesis Problem. To solve the
Any task with Naïve Enumeration and Pruned Enumeration, we ended enumeration after the
first solution they found. To solve the Any task with Honeybee, we automatically selected the first
of the available steps provided in each synthesis round. We ran all three algorithms on both the
Fin and Inf suites, as the baselines need not enumerate all solutions to solve the Any task.
Figure 11 shows that Naïve Enumeration solves 13/21 of the benchmarks, Pruned Enumera-

tion solves 15/21, and Honeybee solves 14/21. As expected, Naïve Enumeration and Pruned
Enumeration can solvemore benchmarks on the Any task than when solving the Programming by
Navigation Synthesis Problem, as, even on the benchmarks where they cannot return all solutions,
they may be able to find some solution. Additionally, due to always selecting the first step, Hon-
eybee solves fewer benchmarks on the Any task. We can think of the select-first-step strategy as
essentially performing depth-first search in the space of steps. While it is always valid to select the
first step (a valid program is still available along the path, even if we end synthesis at the time cutoff),
doing so may extend the interactive process compared to selecting other steps. This is a necessary
consequence of the requirement to be able to reach all solutions (Strong Completeness). In
comparison, for performance reasons, we specifically designed our enumerative approaches to be
breadth-first so that they would always arrive at a solution of minimal size first.

7.5 Threats to Validity

As both our synthesis problem and instantiation are novel, there is no existing benchmark suite. As
a result, we can artificially inflate the number of benchmarks that Honeybee solves compared to
the baseline approaches. For example, in the extreme, we could exclude any benchmark from Fin

that the baselines could solve. To partially mitigate this potential bias, we randomly sampled the 10
particular programs associated with each benchmark for all but four benchmarks. For these four

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

Programming by Navigation 165:19

benchmarks (all in the Inf suite), we could not randomly sample programs, so we manually selected
the particular programs for these benchmarks. Since we selected the programs, it is possible that
we specifically selected programs that Honeybee performs particularly well on. We mitigated
this bias by not measuring Honeybee performance on any of the selected particular programs
until the programs had already been fixed. Additionally, Honeybee is the only tool that solves the
Programming by Navigation Synthesis Problem when there are infinitely many solutions, so these
manual choices cannot disadvantage our baselines.

8 Limitations

Programming by Navigation requires strong guarantees of the synthesis process—Strong Com-
pleteness and Strong Soundness—which may not always be possible to adhere to in designing
a synthesis algorithm. For example, when working with fully dependent types such as in Rocq [88],
Agda [76], or Lean [73], type inhabitation is undecidable, so maintaining both Strong Com-
pleteness and Strong Soundness is provably impossible. Indeed, Löb [60] showed that type
inhabitation in even just System F is undecidable. Therefore, there will always be a place for
synthesizers that do not offer the guarantees of Programming by Navigation.
Additionally, Section 7.2 shows that Programming by Navigation has overhead compared to

enumeration. For smaller problems, enumeration remains a strong strategy for program synthesis.

9 Discussion

In the sections above, we have developed a formalism, problem statement, and algorithmic solution
for a new interactive program synthesis approach. We do not have evidence that this approach
is usable by real-world users, and this paper makes no claims about its usability. In fact, the step
decider in our approach (Figure 4) does not need to be a human user at all! Having said this, we are
excited about the possibility of building a usable interface for Programming by Navigation and
briefly discuss some related topics below.

9.1 Backtracking in Programming by Navigation

Programming by Navigation guarantees Strong Soundness, which ensures that the current
specification is always satisfiable at every stage of the iterative refinement process. However, a
user may still wish to opt-in to backtracking for at least two reasons:

(1) A user might realize a specific previously-taken step was a mistake. Let’s say the user
selected 𝜎1, 𝜎2, 𝜎3, 𝜎4. If they realize 𝜎3 was a mistake, they could simply revert to 𝜎2 (saving
their work up to that point) and continue Programming by Navigation as usual.

(2) A user might realize that none of the currently-suggested steps are desirable. Let’s
say the user has selected 𝜎1, 𝜎2, 𝜎3, 𝜎4 and the provided next steps are ?1 ↦→ 𝑓 (?3) and
?2 ↦→ 𝑔(?4, ?5), where these steps are drawn from our top-down instantiation of Programming
by Navigation. If the user is unhappy with these options, the synthesizer could remove 𝑓

and 𝑔 from the library and check if the queries (Definition 5.5) for the holes in the working
expression are derivable. (This requires only a single query to the Datalog engine per hole
in the working expression.) With the working expression resulting from 𝜎4, this check is
guaranteed to fail, as 𝑓 and 𝑔 are no longer in the library. The synthesizer can then revert to
𝜎3 and try this check again; if it succeeds, then the synthesizer has successfully identified
the user-selected step (𝜎4) that led them to the undesirable suggestions. Otherwise, the
synthesizer can keep backtracking—even all the way to the starting expression. If the goal
fact is still not derivable at the starting expression, then the problem has no solution using
the new component library, which the tool can report to the user.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

165:20 Justin Lubin, Parker Ziegler, and Sarah E. Chasins

9.2 Programming by Navigation in Context

Finally, we briefly describe the constraints of the real-world setting that inspired Programming by
Navigation and how it fits those constraints.

Programming by Navigation arose out of a close collaboration with experimental biologists who
have immense domain expertise but limited programming experience. Taking the working example
from Section 2, many of the biologists deeply understand the idea of batch-level differences between
samples, but do not necessarily know that there is a computational way to correct for it or how to
write a program to do so.

However, we observed that the biologists can easily and quickly provide details of their experi-
ment. For example, for a pooled CRISPR screen [16], they might list the following:

• Transfect cells on day 1 using transfection sequences in file transfect.fasta.
• Sequence cells on day 3, results stored in file day3.fastq.
• Sequence cells on day 10, results stored in file day10.fastq.

Their goal would then be to calculate what is called a “phenotype score” between days 3 and 10.
Compared to more complicated experiments, a CRISPR screen is relatively easy to analyze. However,
just one step of the analysis pipeline alone—computing a phenotype score from processed data—can
be done with at least 9 different algorithms [17]!

The above sequence of facts translates to atomic propositions in Programming by Navigation as

Δ = { Transfect(1, “transfect.fasta”), Sequence(3, “day3.fastq”), Sequence(10, “day10.fastq”) }.

The goal of computing a phenotype score between days 3 and 10 corresponds to a goal type of
PhenotypeScore⟨3, 10⟩. Programming by Navigation takes this specification as input, and provides
the set of next steps that are possible for this specification. At a high level, here is what the first
round of interaction would look like:

You want to calculate a PhenotypeScore. Here are the options to do so:

1) Redundant siRNA activity [52]
2) MAGeCK robust ranking algorithm [58]
3) HiTSelect [26]
4) MAGeCK maximum likelihood estimation [57]
5) BAGEL [40]

6) CRISPhieRmix [25]
7) CERES [71]
8) JACKS [5]
9) t-test

Which option would you like to choose?

In the above interaction, the synthesizer could also link to Bodapati et al. [17]’s comparison of
thesemethods and the experimental biologist could use their expert judgment to decide whichworks
best for their particular scenario. (The link to this comparison or other supporting information
could easily be stored as an annotation on the PhenotypeScore type in the library.)
The biologist does not need to know how to write the program in order to use Programming

by Navigation; they just need to decide between this curated list of options (which, by Strong
Soundness and Strong Completeness is exactly the list of valid next steps). Moreover, they
do not need to know these choices up front; they are provided with exactly the set of choices they
need to make, and exactly the set of options available for each choice. Thus, Programming by
Navigation here does not assume that the user knows (i) how to write the program nor (ii) the
set of components involved in it. Instead, it assumes that the user can make an informed decision
between different choices in the program when presented with exactly the list of valid next steps.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

Programming by Navigation 165:21

10 Related Work

10.1 Iterative Specification Refinement

Programming by Navigation is a type of interactive synthesis, in which an initial under-specification
is iteratively refined. Programming by Navigation offers two guarantees: Strong Completeness
and Strong Soundness. As a reminder, Strong Completeness ensures that all valid programs
are constructible. Strong Soundness ensures that, at each round of interaction, all provided
steps (which can be thought of as specification refinements) lead to a valid program; in other words,
that a valid specification can never be refined to an unsatisfiable one.

Prior work offers different guarantees. For example, some approaches assume that the specifica-
tion refinement is always done correctly (for some notion of correctness), which violates Strong
Soundness. This includes minimally adequate teachers in Angluin [6]’s foundational 𝐿∗ algorithm,
Le et al. [55]’s 𝜙∗-driven interactive program synthesis process (Problem 1, Axioms A and B),
and Peleg et al. [83]’s iterative behavior requirement (Definitions 5 and 6). If it is not possible to
maintain the guarantees of Programming by Navigation in a particular domain, such assumptions
are very useful for maintaining theoretical properties such as soundness.

More generally, many interactive program synthesizers take in a specification, return a program,
and enable arbitrary modifications to the specification before rerunning synthesis [44, 82, 84, 107,
110]. Peleg et al. [83] put this approach on a firm theoretical basis using abstract domains. Such
approaches are highly flexible but, as above, do not guarantee Strong Soundness.
Another class of synthesizers enables pruning of the search space of the synthesizer as it runs,

such as Zhang et al. [106]’s search tree interface and Blinn et al. [15]’s Hazel Live Assistant. Like
Programming by Navigation, these approaches can guide the synthesizer to a particular solution,
but they do not offer Strong Soundness.
A final class of interactive program synthesizers support specification refinement in the form

of assigning output values to disambiguating examples. Jha et al. [46]’s oracle-guided inductive
synthesis, Mayer et al. [70]’s conversational clarification interface, and Angluin [6]’s 𝐿∗ algorithm
all fall into this category. Additionally, a variety of prior work has explored optimal disambiguating
questions to propose [21, 47, 80, 100]. As output values may be arbitrarily assigned to input values,
inconsistent responses can yield an unsatisfiable specification, violating Strong Soundness.
Mayer et al. [70] proposes an interface that comes close to Strong Soundness; it lets users

choose between a small number of alternatives for subexpressions of a synthesized term. However,
it also allows arbitrary modifications, violating Strong Soundness. Further, not all expressions
are guaranteed to be accessible. Consequently, it does not offer Strong Completeness.

10.2 Datalog for Programming Languages

Many prior works have used hand-written Datalog to express program analyses such as point-to
analysis declaratively [19, 33, 90, 98, 103]. In contrast, we use programatically-generated Datalog
as an oracle for our synthesizer. Another line of work aims to synthesize Datalog programs [4, 86,
93, 102]; we do the converse, synthesizing non-Datalog programs using Datalog under the hood.
Lastly, a variety of Datalog extensions have brought additional expressive power to Datalog, often
for the purposes of program analyses [7, 8, 12, 13, 66, 109]. An exciting future direction would be
to leverage these techniques for efficient oracles for more expressive notions of validity.

10.3 Program Synthesis Techniques

Our particular instantiation of Programming by Navigation is for component-based synthesis,
which builds on a long and rich history of prior work [1, 2, 11, 14, 18, 22, 30–32, 34, 37, 39, 42, 45,
46, 48, 53, 63, 67, 68, 75, 92, 94, 97]. Although we do not explore the idea here, it would be exciting

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

165:22 Justin Lubin, Parker Ziegler, and Sarah E. Chasins

future work to explore applying Programming by Navigation to recursive program synthesis (in
which a recursive program is synthesized, often from scratch), which also has a long and rich
history [3, 28, 29, 43, 49, 50, 56, 62, 72, 74, 79, 85, 105].
Programming by Navigation features an iterative loop between two interacting components: a

step provider and a step decider. CEGIS [95, 96] and its generalization OGIS [46] also feature an
iterative loop between two components: a program candidate proposer and a counterexample gen-
erator. The CEGIS/OGIS architecture differs in a number of ways from Programming by Navigation.
The program candidate proposer synthesizes a single complete program that is consistent with a
set of examples; in contrast, our step provider produces a set that includes all and only the valid
next steps. The counterexample generator must prove that a program satisfies a specification or
return a counterexample; in contrast, our step decider must simply choose among the set of valid
next steps. Overall, CEGIS/OGIS follows a generate-and-check approach, whereas Programming by
Navigation synthesizers satisfy Strong Completeness and Strong Soundness.
Lastly, Programming by Example synthesizers base their specification on input-output exam-

ples [3, 11, 32, 34, 37, 42, 43, 56, 62, 72, 74, 75, 79, 92, 94, 97, 105]. For domains with complex
operations and data that is hundreds of gigabytes large—such as bioinformatics and geospatial
analyses—it is not clear what an input-output example would constitute. However, it would be
exciting to explore Programming by Navigation in domains where input-output examples could
apply. It may be possible to draw on prior Programming By Example synthesizers’ version space
algebras (VSAs) [37, 55, 70] to define an oracle that uses a VSA-based internal representation rather
than a Datalog-based one for problems with finitely many solutions.

10.4 Other Relevant Techniques

Structure editors [24, 35, 41, 51, 78, 87, 99] and other AST construction tools [10] prevent program
edits that are syntactically invalid. Omar et al. [78]’s Hazelnut structure editor calculus goes a step
further, modeling fine-grained cursor movements and ensuring that all edits result in well-typed
programs. In a similar spirit, Programming by Navigation prevents steps that are semantically

invalid with respect to some notion of validity. An interesting direction of future work could be to
combine Programming by Navigation with Omar et al. [78]’s cursor traversal guarantees.

Additionally, the goals and steps displayed by Programming by Navigation (as shown in Figure 2,
for example) have similarities to the proof state displayed by proof assistants such as Rocq [88]
and Lean [73]. A key difference is that these proof assistants do not (and cannot in general, due to
the undecidability) display a list of steps—the equivalent of which would be tactics—that would be
guaranteed to advance the proof state toward the proof goal.

11 Conclusion

While existing techniques for refining underspecifications will remain the best fit for situations in
which type inhabitation is undecidable, no prior technique offers Strong Completeness and
Strong Soundness. This work introduces the Programming by Navigation Synthesis Problem,
a new synthesis problem formulation designed to structure the process of iteratively refining a
specification in order to find a particular solution. In contrast to prior specification-refinement
synthesis techniques, we formally prove that synthesizers that solve the Programming byNavigation
synthesis problem show all valid steps and only valid steps. By taking advantage of the fact that
the synthesizer only needs to know whether or not a valid solution exists along a path, we develop
a classical–constructive synthesis algorithm for solving the Programming by Navigation Synthesis
Problem. We also propose and implement an inhabitation oracle for identifying valid paths without
preemptively constructing programs. Together, these contributions represent the first specification
refinement synthesizer that offers both Strong Completeness and Strong Soundness.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

Programming by Navigation 165:23

Data Availability Statement

Honeybee is open source and freely available at https://github.com/justinlubin/honeybee. We
also provide an archived snapshot of the Honeybee codebase and evaluation setup (including the
benchmark suite and all particular programs for each entry) for reproduction as a Docker image
hosted on Zenodo [64, 65].

Acknowledgments

We are grateful for the feedback from our anonymous PLDI reviewers and shepherd. We are also
deeply indebted to James Nuñez, Mercedes Paredes, Jennifer Listgarten, and all members of their
labs for their generous and patient mentorship in biology. We would also like to thank Max Willsey
for the insightful conversations and the developers of the egglog Rust crate for making a wonderful
library. This material is based upon work supported by the National Science Foundation Graduate
Research Fellowship under Grant No. 175281 and is supported in part by NSF grants FW-HTF
2129008 and CA-HDR 2033558, as well as by gifts from the Chan Zuckerberg Biohub, Google,
G-Research, Adobe, and Microsoft. Chasins is a Chan Zuckerberg Biohub Investigator.

References

[1] Maaz Bin Safeer Ahmad and Alvin Cheung. 2018. Automatically Leveraging MapReduce Frameworks for Data-
Intensive Applications. In Proceedings of the 2018 International Conference on Management of Data (SIGMOD). doi:10.
1145/3183713.3196891

[2] Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil. 2019. Automatically Translating
Image Processing Libraries to Halide. In ACM Transactions on Graphics (TOG). doi:10.1145/3355089.3356549

[3] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive Program Synthesis. In Proceedings of the

25th International Conference on Computer Aided Verification (CAV). doi:10.1007/978-3-642-39799-8_67
[4] Aws Albarghouthi, Paraschos Koutris, Mayur Naik, and Calvin Smith. 2017. Constraint-Based Synthesis of Datalog

Programs. In Principles and Practice of Constraint Programming. doi:10.1007/978-3-319-66158-2_44
[5] Felicity Allen, Fiona Behan, Anton Khodak, Francesco Iorio, Kosuke Yusa, Mathew Garnett, and Leopold Parts. 2019.

JACKS: Joint Analysis of CRISPR/Cas9 Knockout Screens. In Genome Research. doi:10.1101/gr.238923.118
[6] Dana Angluin. 1987. Learning Regular Sets from Queries and Counterexamples. In Information and Computation.

doi:10.1016/0890-5401(87)90052-6
[7] Michael Arntzenius and Neel Krishnaswami. 2019. Seminaïve Evaluation for a Higher-Order Functional Language. In

Proceedings of the ACM on Programming Languages, Issue POPL. doi:10.1145/3371090
[8] Michael Arntzenius and Neelakantan R. Krishnaswami. 2016. Datafun: A Functional Datalog. In Proceedings of the

21st ACM SIGPLAN International Conference on Functional Programming (ICFP). doi:10.1145/2951913.2951948
[9] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. 1986. Magic Sets and Other Strange Ways

to Implement Logic Programs (Extended Abstract). In Proceedings of the 5th ACM SIGACT-SIGMOD Symposium on

Principles of Database Systems (PODS). doi:10.1145/6012.15399
[10] Osbert Bastani, Xin Zhang, and Armando Solar-Lezama. 2021. Synthesizing Queries via Interactive Sketching.

arXiv:1912.12659 [cs]
[11] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. 2019. AutoPandas: Neural-Backed Generators

for Program Synthesis. In Proceedings of the ACM on Programming Languages, Issue OOPSLA. doi:10.1145/3360594
[12] Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2020. Formulog: Datalog for SMT-based Static Analysis.

In Proceedings of the ACM on Programming Languages, Issue OOPSLA. doi:10.1145/3428209
[13] Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2024. Making Formulog Fast: An Argument for Unconven-

tional Datalog Evaluation. In Proceedings of the ACM on Programming Languages, Issue OOPSLA2. doi:10.1145/3689754
[14] Sahil Bhatia, Sumer Kohli, Sanjit A. Seshia, and Alvin Cheung. 2023. Building Code Transpilers for Domain-

Specific Languages Using Program Synthesis. In 37th European Conference on Object-Oriented Programming (ECOOP).
doi:10.4230/LIPIcs.ECOOP.2023.38

[15] Andrew Blinn, David Moon, Eric Griffis, and Cyrus Omar. 2022. An Integrative Human-Centered Architecture
for Interactive Programming Assistants. In IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC). doi:10.1109/VL/HCC53370.2022.9833110
[16] Christoph Bock, Paul Datlinger, Florence Chardon, Matthew A. Coelho, Matthew B. Dong, Keith A. Lawson, Tian Lu,

Laetitia Maroc, Thomas M. Norman, Bicna Song, Geoff Stanley, Sidi Chen, Mathew Garnett, Wei Li, Jason Moffat,

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

https://github.com/justinlubin/honeybee
https://doi.org/10.1145/3183713.3196891
https://doi.org/10.1145/3183713.3196891
https://doi.org/10.1145/3355089.3356549
https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-319-66158-2_44
https://doi.org/10.1101/gr.238923.118
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/3371090
https://doi.org/10.1145/2951913.2951948
https://doi.org/10.1145/6012.15399
https://arxiv.org/abs/1912.12659
https://doi.org/10.1145/3360594
https://doi.org/10.1145/3428209
https://doi.org/10.1145/3689754
https://doi.org/10.4230/LIPIcs.ECOOP.2023.38
https://doi.org/10.1109/VL/HCC53370.2022.9833110

165:24 Justin Lubin, Parker Ziegler, and Sarah E. Chasins

Lei S. Qi, Rebecca S. Shapiro, Jay Shendure, Jonathan S. Weissman, and Xiaowei Zhuang. 2022. High-Content CRISPR
Screening. In Nature Reviews Methods Primers. doi:10.1038/s43586-021-00093-4

[17] Sunil Bodapati, Timothy P. Daley, Xueqiu Lin, James Zou, and Lei S. Qi. 2020. A Benchmark of Algorithms for the
Analysis of Pooled CRISPR Screens. In Genome Biology. doi:10.1186/s13059-020-01972-x

[18] Henrique Botelho Guerra, João F. Ferreira, and João Costa Seco. 2023. Hoogle★: Constants and 𝜆-Abstractions in
Petri-net-based Synthesis Using Symbolic Execution. In 37th European Conference on Object-Oriented Programming

(ECOOP). doi:10.4230/LIPIcs.ECOOP.2023.4
[19] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specification of Sophisticated Points-to

Analyses. In Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems Languages

and Applications (OOPSLA). doi:10.1145/1640089.1640108
[20] Nicolas L. Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. 2016. Near-Optimal Probabilistic RNA-seq Quantifi-

cation. In Nature Biotechnology. doi:10.1038/nbt.3519
[21] Yanju Chen, Chenglong Wang, Xinyu Wang, Osbert Bastani, and Yu Feng. 2023. Fast and Reliable Program Synthesis

via User Interaction. In 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). doi:10.
1109/ASE56229.2023.00129

[22] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing Database-Backed Applications
with Query Synthesis. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI). doi:10.1145/2491956.2462180
[23] Richard H. Connelly and F. Lockwood Morris. 1995. A Generalization of the Trie Data Structure. In Mathematical

Structures in Computer Science. doi:10.1017/S0960129500000803
[24] Matthew Conway, Steve Audia, Tommy Burnette, Dennis Cosgrove, and Kevin Christiansen. 2000. Alice: Lessons

Learned from Building a 3D System for Novices. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (CHI). doi:10.1145/332040.332481
[25] Timothy P. Daley, Zhixiang Lin, Xueqiu Lin, Yanxia Liu, Wing Hung Wong, and Lei S. Qi. 2018. CRISPhieRmix: A

Hierarchical Mixture Model for CRISPR Pooled Screens. In Genome Biology. doi:10.1186/s13059-018-1538-6
[26] Aaron A. Diaz, Han Qin, Miguel Ramalho-Santos, and Jun S. Song. 2015. HiTSelect: A Comprehensive Tool for

High-Complexity-Pooled Screen Analysis. In Nucleic Acids Research. doi:10.1093/nar/gku1197
[27] Alexander Dobin, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha, Philippe Batut, Mark

Chaisson, and Thomas R. Gingeras. 2013. STAR: Ultrafast Universal RNA-seq Aligner. In Bioinformatics. doi:10.1093/
bioinformatics/bts635

[28] Azadeh Farzan, Danya Lette, and Victor Nicolet. 2022. Recursion Synthesis with Unrealizability Witnesses. In
Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation

(PLDI). doi:10.1145/3519939.3523726
[29] Azadeh Farzan and Victor Nicolet. 2021. Counterexample-Guided Partial Bounding for Recursive Function Synthesis.

In Computer Aided Verification (CAV). doi:10.1007/978-3-030-81685-8_39
[30] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program Synthesis Using Conflict-Driven Learning.

In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
doi:10.1145/3192366.3192382

[31] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017. Component-Based Synthesis of
Table Consolidation and Transformation Tasks from Examples. In Proceedings of the 38th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI). doi:10.1145/3062341.3062351
[32] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017. Component-Based Synthesis for

Complex APIs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL).
doi:10.1145/3009837.3009851

[33] Yu Feng, Xinyu Wang, Isil Dillig, and Thomas Dillig. 2015. Bottom-Up Context-Sensitive Pointer Analysis for Java. In
Programming Languages and Systems (APLAS). doi:10.1007/978-3-319-26529-2_25

[34] John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-Output
Examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI). doi:10.1145/2737924.2737977
[35] David B. Garlan and Philip L. Miller. 1984. GNOME: An Introductory Programming Environment Based on a Family

of Structure Editors. In ACM SIGPLAN Notices. doi:10.1145/390011.808250
[36] Gerhard Gentzen. 1964. Investigations into Logical Deduction. In American Philosophical Quarterly. jstor:20009142
[37] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-Output Examples. In Proceedings of

the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). doi:10.1145/
1926385.1926423

[38] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis. doi:10.1561/2500000010

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

https://doi.org/10.1038/s43586-021-00093-4
https://doi.org/10.1186/s13059-020-01972-x
https://doi.org/10.4230/LIPIcs.ECOOP.2023.4
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1109/ASE56229.2023.00129
https://doi.org/10.1109/ASE56229.2023.00129
https://doi.org/10.1145/2491956.2462180
https://doi.org/10.1017/S0960129500000803
https://doi.org/10.1145/332040.332481
https://doi.org/10.1186/s13059-018-1538-6
https://doi.org/10.1093/nar/gku1197
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1145/3519939.3523726
https://doi.org/10.1007/978-3-030-81685-8_39
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1007/978-3-319-26529-2_25
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/390011.808250
https://www.jstor.org/stable/20009142
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1561/2500000010

Programming by Navigation 165:25

[39] Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, and Nadia Polikarpova. 2019.
Program Synthesis by Type-Guided Abstraction Refinement. In Proceedings of the ACM on Programming Languages,

Issue POPL. doi:10.1145/3371080
[40] Traver Hart and Jason Moffat. 2016. BAGEL: A Computational Framework for Identifying Essential Genes from

Pooled Library Screens. In BMC Bioinformatics. doi:10.1186/s12859-016-1015-8
[41] Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh. 2018. Deuce: A Lightweight User Interface for Structured

Editing. In Proceedings of the 40th International Conference on Software Engineering (ICSE). doi:10.1145/3180155.3180165
[42] Martin Hofmann and Emanuel Kitzelmann. 2010. I/O Guided Detection of List Catamorphisms: Towards Problem

Specific Use of Program Templates in IP. In Proceedings of the 2010 ACM SIGPLAN Workshop on Partial Evaluation and

Program Manipulation (PEPM). doi:10.1145/1706356.1706375
[43] Qiantan Hong and Alex Aiken. 2024. Recursive Program Synthesis Using Paramorphisms. In Proceedings of the ACM

on Programming Languages, Issue PLDI. doi:10.1145/3656381
[44] Jingmei Hu, Priyan Vaithilingam, Stephen Chong, Margo Seltzer, and Elena L. Glassman. 2021. Assuage: Assembly

Synthesis Using A Guided Exploration. In The 34th Annual ACM Symposium on User Interface Software and Technology

(UIST). doi:10.1145/3472749.3474740
[45] Michael B. James, Zheng Guo, Ziteng Wang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and Nadia Polikarpova. 2020.

Digging for Fold: Synthesis-Aided API Discovery for Haskell. In Proceedings of the ACM on Programming Languages,

Issue OOPSLA. doi:10.1145/3428273
[46] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-Guided Component-Based Program

Synthesis. In ACM/IEEE 32nd International Conference on Software Engineering (ICSE). doi:10.1145/1806799.1806833
[47] Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and Zhenjiang Hu. 2020. Question Selection for Interactive Program

Synthesis. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI). doi:10.1145/3385412.3386025
[48] Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama. 2016. Verified Lifting of Stencil Computa-

tions. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI). doi:10.1145/2908080.2908117
[49] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. 2013. Synthesis Modulo Recursive Functions. In

Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages &

Applications (OOPSLA). doi:10.1145/2509136.2509555
[50] Tristan Knoth, Di Wang, Nadia Polikarpova, and Jan Hoffmann. 2019. Resource-Guided Program Synthesis. In

Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
doi:10.1145/3314221.3314602

[51] Amy J. Ko and Brad A. Myers. 2006. Barista: An Implementation Framework for Enabling New Tools, Interaction
Techniques and Views in Code Editors. In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (CHI). doi:10.1145/1124772.1124831
[52] Renate König, Chih-yuan Chiang, Buu P. Tu, S. Frank Yan, Paul D. DeJesus, Angelica Romero, Tobias Bergauer,

Anthony Orth, Ute Krueger, Yingyao Zhou, and Sumit K. Chanda. 2007. A Probability-Based Approach for the
Analysis of Large-Scale RNAi Screens. In Nature Methods. doi:10.1038/nmeth1089

[53] James Koppel, Zheng Guo, Edsko de Vries, Armando Solar-Lezama, and Nadia Polikarpova. 2022. Searching Entangled
Program Spaces. In Proceedings of the ACM on Programming Languages, Issue ICFP. doi:10.1145/3547622

[54] Ben Langmead and Steven L. Salzberg. 2012. Fast Gapped-Read Alignment with Bowtie 2. In Nature Methods.
doi:10.1038/nmeth.1923

[55] Vu Le, Daniel Perelman, Oleksandr Polozov, Mohammad Raza, Abhishek Udupa, and Sumit Gulwani. 2017. Interactive
Program Synthesis. arXiv:1703.03539 [cs]

[56] Woosuk Lee and Hangyeol Cho. 2023. Inductive Synthesis of Structurally Recursive Functional Programs from
Non-recursive Expressions. In Proceedings of the ACM on Programming Languages, Issue POPL. doi:10.1145/3571263

[57] Wei Li, Johannes Köster, Han Xu, Chen-Hao Chen, Tengfei Xiao, Jun S. Liu, Myles Brown, and X. Shirley Liu.
2015. Quality Control, Modeling, and Visualization of CRISPR Screens with MAGeCK-VISPR. In Genome Biology.
doi:10.1186/s13059-015-0843-6

[58] Wei Li, Han Xu, Tengfei Xiao, Le Cong, Michael I. Love, Feng Zhang, Rafael A. Irizarry, Jun S. Liu, Myles Brown, and
X. Shirley Liu. 2014. MAGeCK Enables Robust Identification of Essential Genes from Genome-Scale CRISPR/Cas9
Knockout Screens. In Genome Biology. doi:10.1186/s13059-014-0554-4

[59] Yang Liao, Gordon K. Smyth, and Wei Shi. 2014. featureCounts: An Efficient General Purpose Program for Assigning
Sequence Reads to Genomic Features. In Bioinformatics. doi:10.1093/bioinformatics/btt656

[60] M. H. Löb. 1976. Embedding First Order Predicate Logic in Fragments of Intuitionistic Logic. In The Journal of

Symbolic Logic. doi:10.2307/2272390

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

https://doi.org/10.1145/3371080
https://doi.org/10.1186/s12859-016-1015-8
https://doi.org/10.1145/3180155.3180165
https://doi.org/10.1145/1706356.1706375
https://doi.org/10.1145/3656381
https://doi.org/10.1145/3472749.3474740
https://doi.org/10.1145/3428273
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/3385412.3386025
https://doi.org/10.1145/2908080.2908117
https://doi.org/10.1145/2509136.2509555
https://doi.org/10.1145/3314221.3314602
https://doi.org/10.1145/1124772.1124831
https://doi.org/10.1038/nmeth1089
https://doi.org/10.1145/3547622
https://doi.org/10.1038/nmeth.1923
https://arxiv.org/abs/1703.03539
https://doi.org/10.1145/3571263
https://doi.org/10.1186/s13059-015-0843-6
https://doi.org/10.1186/s13059-014-0554-4
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.2307/2272390

165:26 Justin Lubin, Parker Ziegler, and Sarah E. Chasins

[61] Michael I. Love, Wolfgang Huber, and Simon Anders. 2014. Moderated Estimation of Fold Change and Dispersion for
RNA-seq Data with DESeq2. In Genome Biology. doi:10.1186/s13059-014-0550-8

[62] Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. 2020. Program Sketching with Live Bidirectional Evaluation.
In Proceedings of the ACM on Programming Languages, Issue ICFP. doi:10.1145/3408991

[63] Justin Lubin, Jeremy Ferguson, Kevin Ye, Jacob Yim, and Sarah E. Chasins. 2024. Equivalence by Canonicalization for
Synthesis-Backed Refactoring. In Proceedings of the ACM on Programming Languages, Issue PLDI. doi:10.1145/3656453

[64] Justin Lubin, Parker Ziegler, and Sarah E. Chasins. 2025. Honeybee Docker Image. Zenodo. doi:10.5281/zenodo.
15033531

[65] Justin Lubin, Parker Ziegler, and Sarah E. Chasins. 2025. Honeybee Docker Image (Exact Version for Artifact
Evaluation). Zenodo. doi:10.5281/zenodo.15047790

[66] Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. 2016. From Datalog to Flix: A Declarative Language for Fixed
Points on Lattices. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI). doi:10.1145/2908080.2908096
[67] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. 2005. Jungloid Mining: Helping to Navigate the API

Jungle. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI). doi:10.1145/1065010.1065018
[68] Benjamin Mariano, Yanju Chen, Yu Feng, Greg Durrett, and Işil Dillig. 2022. Automated Transpilation of Imperative

to Functional Code Using Neural-Guided Program Synthesis. In Proceedings of the ACM on Programming Languages,

Issue OOPSLA1. doi:10.1145/3527315
[69] Jeffrey G. Masek, Michael A. Wulder, Brian Markham, Joel McCorkel, Christopher J. Crawford, James Storey, and

Del T. Jenstrom. 2020. Landsat 9: Empowering open science and applications through continuity. In Remote Sensing

of Environment. doi:10.1016/j.rse.2020.111968
[70] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr Polozov, Rishabh Singh, Benjamin

Zorn, and Sumit Gulwani. 2015. User Interaction Models for Disambiguation in Programming by Example. In
Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (UIST). doi:10.1145/2807442.
2807459

[71] Robin M. Meyers, Jordan G. Bryan, James M. McFarland, Barbara A. Weir, Ann E. Sizemore, Han Xu, Neekesh V.
Dharia, Phillip G. Montgomery, Glenn S. Cowley, Sasha Pantel, Amy Goodale, Yenarae Lee, Levi D. Ali, Guozhi
Jiang, Rakela Lubonja, William F. Harrington, Matthew Strickland, Ting Wu, Derek C. Hawes, Victor A. Zhivich,
Meghan R. Wyatt, Zohra Kalani, Jaime J. Chang, Michael Okamoto, Kimberly Stegmaier, Todd R. Golub, Jesse S.
Boehm, Francisca Vazquez, David E. Root, William C. Hahn, and Aviad Tsherniak. 2017. Computational Correction of
Copy Number Effect Improves Specificity of CRISPR–Cas9 Essentiality Screens in Cancer Cells. In Nature Genetics.
doi:10.1038/ng.3984

[72] Anders Miltner, Adrian Trejo Nuñez, Ana Brendel, Swarat Chaudhuri, and Isil Dillig. 2022. Bottom-up Synthesis of
Recursive Functional Programs Using Angelic Execution. In Proceedings of the ACM on Programming Languages, Issue

POPL. doi:10.1145/3498682
[73] Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem Prover and Programming Language. In

Automated Deduction (CADE). doi:10.1007/978-3-030-79876-5_37
[74] Niek Mulleners, Johan Jeuring, and Bastiaan Heeren. 2023. Program Synthesis Using Example Propagation. In Practical

Aspects of Declarative Languages (PADL). doi:10.1007/978-3-031-24841-2_2
[75] Daye Nam, Baishakhi Ray, Seohyun Kim, Xianshan Qu, and Satish Chandra. 2022. Predictive Synthesis of API-

centric Code. In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming (MAPS).
doi:10.1145/3520312.3534866

[76] Ulf Norell. 2007. Towards a Practical Programming Language Based on Dependent Type Theory. Ph. D. Dissertation.
Department of Computer Science and Engineering, Chalmers University of Technology.

[77] Vegard Nygaard, Einar Andreas Rødland, and Eivind Hovig. 2016. Methods That Remove Batch Effects While
Retaining Group Differences May Lead to Exaggerated Confidence in Downstream Analyses. In Biostatistics. doi:10.
1093/biostatistics/kxv027

[78] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, andMatthewA. Hammer. 2017. Hazelnut: A Bidirectionally
Typed Structure Editor Calculus. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming

Languages (POPL). doi:10.1145/3009837.3009900
[79] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-Example-Directed Program Synthesis. In Proceedings of

the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). doi:10.1145/2737924.
2738007

[80] Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit Gulwani, and ToddMillstein. 2018. FlashProfile:
A Framework for Synthesizing Data Profiles. In Proceedings of the ACM on Programming Languages, Issue OOPSLA.
doi:10.1145/3276520

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1145/3408991
https://doi.org/10.1145/3656453
https://doi.org/10.5281/zenodo.15033531
https://doi.org/10.5281/zenodo.15033531
https://doi.org/10.5281/zenodo.15047790
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1145/1065010.1065018
https://doi.org/10.1145/3527315
https://doi.org/10.1016/j.rse.2020.111968
https://doi.org/10.1145/2807442.2807459
https://doi.org/10.1145/2807442.2807459
https://doi.org/10.1038/ng.3984
https://doi.org/10.1145/3498682
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-031-24841-2_2
https://doi.org/10.1145/3520312.3534866
https://doi.org/10.1093/biostatistics/kxv027
https://doi.org/10.1093/biostatistics/kxv027
https://doi.org/10.1145/3009837.3009900
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/3276520

Programming by Navigation 165:27

[81] Rob Patro, Geet Duggal, Michael I. Love, Rafael A. Irizarry, and Carl Kingsford. 2017. Salmon Provides Fast and
Bias-Aware Quantification of Transcript Expression. In Nature Methods. doi:10.1038/nmeth.4197

[82] Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav. 2020. Programming with a Read-Eval-Synth Loop. Proceedings
of the ACM on Programming Languages, Issue OOPSLA (Nov. 2020). doi:10.1145/3428227

[83] Hila Peleg, Shachar Itzhaky, and Sharon Shoham. 2018. Abstraction-Based Interaction Model for Synthesis. In
Verification, Model Checking, and Abstract Interpretation (VMCAI). doi:10.1007/978-3-319-73721-8_18

[84] Hila Peleg, Sharon Shoham, and Eran Yahav. 2018. Programming Not Only by Example. In IEEE/ACM 40th International

Conference on Software Engineering (ICSE). doi:10.1145/3180155.3180189
[85] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program Synthesis from Polymorphic Refinement

Types. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI). doi:10.1145/2908080.2908093
[86] Mukund Raghothaman, JonathanMendelson, David Zhao,Mayur Naik, and Bernhard Scholz. 2019. Provenance-Guided

Synthesis of Datalog Programs. In Proceedings of the ACM on Programming Languages, Issue POPL. doi:10.1145/3371130
[87] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon

Millner, Eric Rosenbaum, Jay Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch: Programming for All. In
Communications of the ACM (CACM). doi:10.1145/1592761.1592779

[88] The Rocq Development Team. 2025. The Rocq Prover. Zenodo. doi:10.5281/zenodo.15149629
[89] J. W. Rouse, R. H. Haas, J. A. Schell, and D. W. Deering. 1974. Monitoring Vegetation Systems in the Great Plains with

ERTS. Technical Report. NASA. https://ntrs.nasa.gov/citations/19740022614
[90] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. 2016. On Fast Large-Scale Program Analysis in

Datalog. In Proceedings of the 25th International Conference on Compiler Construction (CC). doi:10.1145/2892208.2892226
[91] Ophir Shalem, Neville E. Sanjana, Ella Hartenian, Xi Shi, David A. Scott, Tarjei S. Mikkelsen, Dirk Heckl, Benjamin L.

Ebert, David E. Root, John G. Doench, and Feng Zhang. 2014. Genome-Scale CRISPR-Cas9 Knockout Screening in
Human Cells. In Science. doi:10.1126/science.1247005

[92] Kensen Shi, David Bieber, and Rishabh Singh. 2022. TF-Coder: Program Synthesis for Tensor Manipulations. In ACM

Transactions on Programming Languages and Systems (TOPLAS). doi:10.1145/3517034
[93] Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paraschos Koutris, and Mayur Naik. 2018. Syntax-Guided

Synthesis of Datalog Programs. In Proceedings of the 26th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE). doi:10.1145/3236024.3236034
[94] Calvin Smith and Aws Albarghouthi. 2016. MapReduce Program Synthesis. In Proceedings of the 37th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI). doi:10.1145/2908080.2908102
[95] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. 2008. Sketching Concurrent Data Structures.

In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
doi:10.1145/1375581.1375599

[96] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial Sketch-
ing for Finite Programs. In Proceedings of the 12th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS). doi:10.1145/1168857.1168907
[97] Jerry Swan, Krzysztof Krawiec, and Zoltan A. Kocsis. 2019. Stochastic Synthesis of Recursive FunctionsMade Easywith

Bananas, Lenses, Envelopes and Barbed Wire. In Genetic Programming and Evolvable Machines. doi:10.1007/s10710-
019-09347-3

[98] Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter. 2018. Incrementalizing Lattice-Based
Program Analyses in Datalog. In Proceedings of the ACM on Programming Languages, Volume 2, Issue OOPSLA.
doi:10.1145/3276509

[99] Tim Teitelbaum and Thomas Reps. 1981. The Cornell Program Synthesizer: A Syntax-Directed Programming
Environment. In Communications of the ACM (CACM). doi:10.1145/358746.358755

[100] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Interactive Query Synthesis from Input-Output Examples.
In Proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD). doi:10.1145/3035918.
3058738

[101] Tim Wang, Jenny J. Wei, David M. Sabatini, and Eric S. Lander. 2014. Genetic Screens in Human Cells Using the
CRISPR-Cas9 System. In Science. doi:10.1126/science.1246981

[102] Yuepeng Wang, Rushi Shah, Abby Criswell, Rong Pan, and Isil Dillig. 2020. Data Migration Using Datalog Program
Synthesis. In Proceedings of the VLDB Endowment. doi:10.14778/3384345.3384350

[103] JohnWhaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. 2005. Using Datalog with Binary Decision Diagrams
for Program Analysis. In Programming Languages and Systems (APLAS). doi:10.1007/11575467_8

[104] A. K. Wright and M. Felleisen. 1994. A Syntactic Approach to Type Soundness. In Information and Computation.
doi:10.1006/inco.1994.1093

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1145/3428227
https://doi.org/10.1007/978-3-319-73721-8_18
https://doi.org/10.1145/3180155.3180189
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/3371130
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.5281/zenodo.15149629
https://ntrs.nasa.gov/citations/19740022614
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1126/science.1247005
https://doi.org/10.1145/3517034
https://doi.org/10.1145/3236024.3236034
https://doi.org/10.1145/2908080.2908102
https://doi.org/10.1145/1375581.1375599
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1007/s10710-019-09347-3
https://doi.org/10.1007/s10710-019-09347-3
https://doi.org/10.1145/3276509
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/3035918.3058738
https://doi.org/10.1145/3035918.3058738
https://doi.org/10.1126/science.1246981
https://doi.org/10.14778/3384345.3384350
https://doi.org/10.1007/11575467_8
https://doi.org/10.1006/inco.1994.1093

165:28 Justin Lubin, Parker Ziegler, and Sarah E. Chasins

[105] Yongwei Yuan, Arjun Radhakrishna, and Roopsha Samanta. 2023. Trace-Guided Inductive Synthesis of Recursive
Functional Programs. In Proceedings of the ACM on Programming Languages, Issue PLDI. doi:10.1145/3591255

[106] Tianyi Zhang, ZhiyangChen, Yuanli Zhu, PriyanVaithilingam, XinyuWang, and Elena L. Glassman. 2021. Interpretable
Program Synthesis. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI). doi:10.
1145/3411764.3445646

[107] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L. Glassman. 2020. Interactive Program Synthesis by
Augmented Examples. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology

(UIST). doi:10.1145/3379337.3415900
[108] Yuqing Zhang, Giovanni Parmigiani, and W. Evan Johnson. 2020. ComBat-seq: Batch Effect Adjustment for RNA-seq

Count Data. In NAR Genomics and Bioinformatics. doi:10.1093/nargab/lqaa078
[109] Yihong Zhang, Yisu Remy Wang, Oliver Flatt, David Cao, Philip Zucker, Eli Rosenthal, Zachary Tatlock, and Max

Willsey. 2023. Better Together: Unifying Datalog and Equality Saturation. In Proceedings of the ACM on Programming

Languages, Issue PLDI. doi:10.1145/3591239
[110] Zhanhui Zhou, Man To Tang, Qiping Pan, Shangyin Tan, Xinyu Wang, and Tianyi Zhang. 2022. INTENT: Interactive

Tensor Transformation Synthesis. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and

Technology (UIST). doi:10.1145/3526113.3545653

Received 2024-11-15; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.

https://doi.org/10.1145/3591255
https://doi.org/10.1145/3411764.3445646
https://doi.org/10.1145/3411764.3445646
https://doi.org/10.1145/3379337.3415900
https://doi.org/10.1093/nargab/lqaa078
https://doi.org/10.1145/3591239
https://doi.org/10.1145/3526113.3545653

	Abstract
	1 Introduction
	2 Overview
	3 Programming by Navigation
	3.1 Expressions and Steps
	3.2 Programming by Navigation Synthesis Problem
	3.3 Properties of Programming by Navigation

	4 Classical–Constructive Synthesis
	5 Datalog-Backed Inhabitation Oracle
	5.1 Formalizing Validity
	5.2 Compiling to Datalog

	6 Implementation
	7 Evaluation
	7.1 RQ1 Results: Honeybee Solves Benchmarks Impossible or Too Large for Baselines
	7.2 RQ2 Results: Honeybee Scales to Large Problems While Naïve Enumeration and Pruned Enumeration Solve Smaller Problems Faster
	7.3 RQ3 Results: Honeybee Benefits From Off-The-Shelf Memoization
	7.4 RQ4 Results: On the Any Task, Honeybee Performs Comparably to Baselines
	7.5 Threats to Validity

	8 Limitations
	9 Discussion
	9.1 Backtracking in Programming by Navigation
	9.2 Programming by Navigation in Context

	10 Related Work
	10.1 Iterative Specification Refinement
	10.2 Datalog for Programming Languages
	10.3 Program Synthesis Techniques
	10.4 Other Relevant Techniques

	11 Conclusion
	Acknowledgments
	References

