
Programming by Navigation 165:A1

A Naïve Oracle Based on Enumeration

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

Ti
m

e 
ta

ke
n 

(s
)

0 1 2 3 4
Count

Naïve Oracle
(7/13 solved)

Fig. A1. Completion rates for benchmarks with

finitely many solutions (the Fin suite).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ti
m

e 
ta

ke
n 

(s
)

0 1 2 3
Count

Naïve Oracle
(4/8 solved)

Fig. A2. Completion rates for benchmarks with

infinitely many solutions (the Inf suite).

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

0 1 2 3 4 5 6 7 8 9 10
Depth of search space

(for breadth = 5)

0.00

0.25

0.50

0.75

1.00

Ti
m

e 
ta

ke
n 

(s
)

0 1 2 3 4 5 6 7 8 9 10
Breadth of search space

(for depth = 5)

0.00

0.25

0.50

0.75

1.00

Ti
m

e 
ta

ke
n 

(s
)

Naïve Oracle

Fig. A3. Time to solve the scalability benchmarks.

Here we include basic performance results for a naïve oracle for Programming by Navigation to
supplement the results from in Section 7. (This appendix is best read after Section 7.) We speculated
in Section 2 that a fully-constructive oracle would do needless work, and here we show that that is
indeed the case. We based our fully-constructive oracle on the Pruned Enumeration enumerator.
As expected, the performance of this oracle is bad. Because it performs worse than both Pruned
Enumeration and Honeybee, we do not explore it further. These results offer further evidence for
the need for a truly inhabitation-based oracle, rather than a constructive one.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.



Programming by Navigation 165:B1

B Proofs for Main Paper

Proof of Theorem 3.2. The rules for the top-down step relation are syntax-directed and deter-
ministic (Determinism), so all that remains to show are the three properties for the ≺ relation. To
do so, define 𝜙 (𝑒) to be the number of function symbols in 𝑒 . Note that if 𝑒 ≺ 𝑒′, then 𝜙 (𝑒) < 𝜙 (𝑒′).
(1) No Loops: ≺ is transitive by Step/Seq and irreflexive because if 𝑒 ≺ 𝑒′, then 𝜙 (𝑒) < 𝜙 (𝑒′),

so 𝑒 ≠ 𝑒′.
(2) Reachability For all expressions 𝑓 (𝑒1, . . . , 𝑒𝑁 ), we have ?0

?0⇝𝑓 (𝑒1,...,𝑒𝑁 )−−−−−−−−−−−−→ 𝑓 (𝑒1, . . . , 𝑒𝑁 ).
By assumption, holes are not valid expressions.

(3) Finite Between: If 𝑒0 ≺ 𝑒1 ≺ · · · is bounded by 𝑒∗, then 𝜙 (𝑒0) < 𝜙 (𝑒1) < · · · < 𝜙 (𝑒∗). By
infinite descent, this chain must be finite. □

Proof of Theorem 3.7. If there are no valid expressions, then C(𝑒start) = ∅, and the only step
set that covers ∅ is ∅. □

Proof of Theorem 3.8. By Reachability, C(𝑒start) = {𝑒 | 𝑒 valid}, which is nonempty by
assumption. Therefore, if it is not the case that 𝑒start valid, then S(𝑒start) must be nonempty by the
definition of covering, which handles the case in which 𝑁 = 0. If 𝑁 > 0, suppose S(𝑒𝑁 ) = ∅. Then
C(𝑒𝑁 ) \ {𝑒𝑁 } = ∅ by Strong Completeness. However, C(𝑒𝑁 ) ≠ ∅ by Strong Soundness
from the previous round of interaction. Therefore, we must have 𝑒𝑁 ∈ C(𝑒𝑁 ), so 𝑒𝑁 valid. □

Proof of Theorem 3.9. Suppose 𝑒0
𝜎1−→ · · · 𝜎𝑘−−→ 𝑒𝑘 is an S-interaction (𝑘 ≥ 0) with 𝑒𝑘 ≺ 𝑒 . Let

Σ = S(𝑒𝑘 ). Then 𝑒 ∈ C(𝑒𝑘 ) \ {𝑒𝑘 } ⊆
⋃

𝜎∈Σ C(𝜎𝑒𝑘 ) by Strong Completeness, so there exists
𝜎𝑘+1 ∈ Σ such that 𝑒 ∈ C(𝜎𝑘+1𝑒𝑘 ). Thus, letting 𝑒𝑘+1 = 𝜎𝑘+1𝑒𝑘 , we have that 𝑒0

𝜎1−→ · · · 𝜎𝑘+1−−−→ 𝑒𝑘+1 is
an S-interaction with 𝑒𝑘+1 ⪯ 𝑒 . If equality is achieved, we are done. Otherwise, we can repeat the
process and extend the interaction further. However, Finite Between implies there must exist
some point at which equality is achieved. □

Proof of Theorem 4.2. Validity and Strong Soundness follow directly from the definition
of an inhabitation oracle. For Strong Completeness, suppose 𝑒′ ∈ C(𝑒) \ {𝑒}. Then there exists
𝜎 such that 𝑒

𝜎−→ 𝑒′. Let ?ℎ ⇝ 𝑓 (𝑒1, . . . , 𝑒𝑁 ) be the left-most step of 𝜎 . As 𝑒′ valid, each 𝑒𝑖 must be
a function application by our requirement that valid expressions do not contain holes. Further,
we must have ?ℎ ⊳ 𝑒 and (ℎ, 𝑓 ) ∈ O(𝑒), so 𝜎 ∈ S(𝑒) where 𝜎 = ?ℎ ⇝ 𝑓 (?ℎ1 , . . . , ?ℎarity(𝑓 ) ). Then

𝜎𝑒
?ℎ⇝𝑒1 ; · · · ; ?ℎ⇝𝑒

arity(𝑓 )−−−−−−−−−−−−−−−−−−→ 𝑒′, so 𝑒′ ∈ C(𝜎𝑒), and thus Strong Completeness holds. □

Proof of Lemma 5.4.
• (1) =⇒ (2). Proceed by induction on the derivation of vals(Γ) ∪ vals(Δ),Δ,H⟦Γ⟧ ⊢DL 𝜏 (𝑣). By
assumption, this derivation ends in Rule𝑓 with premises 𝜏1 (𝑣1), . . . , 𝜏𝑁 (𝑣𝑁 ) and
𝜑 [𝑣1, . . . , 𝑣𝑁 ; 𝑣]. The inductive hypothesis implies there exist 𝑒1, . . . , 𝑒𝑁 with Γ,Δ ⊢ 𝑒𝑖 : 𝜏 (𝑣𝑖 )
for each 𝑖 , so all preconditions of Γ,Δ ⊢ 𝑓 𝑣 (𝑒1, . . . , 𝑒𝑁 ) : 𝜏 (𝑣) are met.
• (2) =⇒ (1). As proving “(∃𝑥 . 𝑃 (𝑥)) =⇒ 𝑄” is equivalent to proving “∀𝑥 (𝑃 (𝑥) =⇒ 𝑄)”,
it suffices to prove the equivalent proposition that if Γ,Δ ⊢ 𝑓 𝑣 (𝑒1, . . . , 𝑒𝑁 ) : 𝜏 (𝑣), then
vals(Γ) ∪ vals(Δ),Δ,H⟦Γ⟧ ⊢DL 𝜏 (𝑣) with a derivation tree ending in Rule𝑓 . To do so, proceed
by induction on the derivation of Γ,Δ ⊢ 𝑓 𝑣 (𝑒1, . . . , 𝑒𝑁 ) : 𝜏 (𝑣). There is only one case, Well-
Typed/Fun. By the inductive hypothesis, vals(Γ) ∪ vals(Δ),Δ,H⟦Γ⟧ ⊢DL 𝜏𝑖 (𝑣𝑖 ) for each 𝑖 .
Therefore, with the remaining premises, we can construct a derivation tree for vals(Γ) ∪
vals(Δ),Δ,H⟦Γ⟧ ⊢DL 𝜏 (𝑣) ending in Rule𝑓 . □

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.



165:B2 Justin Lubin, Parker Ziegler, and Sarah E. Chasins

Proof of Lemma 5.6. Let (?ℎ𝛼 )𝑀𝛼=1 be the holes of 𝑒 , each of type 𝜏𝛼 .
• (1) =⇒ (2). Each premise 𝜏𝛼 (𝑣𝛼 ) must be derivable with all validity conditions in 𝑒 met and
with a derivation tree ending in, say, Rule𝑔𝛼 . By Lemma 5.4, there exist expressions 𝑒𝛼 such
that Γ,Δ ⊢ 𝑔𝛼 𝑣𝛼 (𝑒𝛼 ) : 𝜏𝛼 (𝑣𝛼 ). Let 𝜎𝛼 = ?ℎ𝛼 ⇝ 𝑔𝛼

𝑣𝛼 (𝑒𝛼 ). Then Γ,Δ ⊢ (𝜎1 ; · · · ; 𝜎𝑀 )𝑒 : 𝜏 (𝑣),
so C([?ℎ ↦→ 𝑔ℎ

𝑣ℎ (𝑒ℎ)]𝑒) ≠ ∅.
• (2) =⇒ (1). As C([?ℎ ↦→ 𝑔(𝑒1, . . . , 𝑒𝑁 )]𝑒) ≠ ∅, each function application in 𝑒 must have the
correct simple type, so QΓ,𝜏⟦𝑒⟧ is defined. Additionally, there exists 𝑘 such that Queryℎ,𝑘 ∈
QΓ,𝜏⟦𝑒⟧ because ?ℎ ⊳ 𝑒 . Moreover, there must exist 𝑣𝛼 for each 𝛼 such that 𝜏𝛼 (𝑣𝛼 ) is inhabited
and all validity conditions in 𝑒 are met. By Lemma 5.4, each 𝜏𝛼 (𝑣𝛼 ) must be derivable, and, in
particular, 𝜏ℎ (𝑣ℎ) must be derivable with a proof tree ending in Rule𝑔 . Thus, the premises of
Queryℎ,𝑘 can be met with the 𝑘th subtree ending in Rule𝑔. □

Proof of Lemma 5.8. Suppose 𝑣 satisfies 𝑅2 with a derivation tree whose 𝑘th subtree ends in 𝑅1
on value 𝑣 ′. Then all premises of 𝑅1 and 𝑅2 hold with 𝑦𝑘 = 𝑥 = 𝑣 ′. These are the premises needed
for 𝑅1/𝑘/𝑅2, so 𝑣 satisfies 𝑅1/𝑘/𝑅2.
Conversely, suppose 𝑣 satisfies 𝑅1/𝑘/𝑅2 with 𝑦𝑘 = 𝑥 = 𝑣 ′. Then all premises of 𝑅1 hold with

𝑥 = 𝑣 ′, and thus 𝑃 (𝑣 ′) holds. Therefore, all premises of 𝑅2 hold with 𝑦 = 𝑣 and 𝑦𝑘 = 𝑣 ′, where the
𝑘th premise can be satisfied by the derivation of 𝑃 (𝑣 ′). □

Proof of Theorem 5.9. Lines 3 and 4 loop over each possible ℎ and 𝑓 for 𝑒 , and Line 5 filters
out any 𝑓 whose return type does not match the required type. By Lemma 5.8, the query to the
rule Rule𝑓 /𝑘/Queryℎ,𝑘 will return all solutions toQueryℎ,𝑘 where there exists a derivation such
that the 𝑘th subtree ends in Rule𝑓 . By Lemma 5.6, this will result in the values 𝑣 such that there
exist 𝑒1, . . . , 𝑒𝑁 with C([?ℎ ↦→ 𝑓 𝑣 (𝑒1, . . . , 𝑒𝑁 )]𝑒) ≠ ∅, which is true (for the top-down rules) if and
only if C([?ℎ ↦→ 𝑓 (?ℎ1 , . . . , ?ℎarity(𝑓 ) )]𝑒) ≠ ∅ with ?ℎ1 , . . . , ?ℎarity(𝑓 ) fresh in 𝑒 , as desired. □

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 165. Publication date: June 2025.


	A Naïve Oracle Based on Enumeration
	B Proofs for Main Paper



