Programming by Navigation
Justin Lubin, Parker Ziegler, Sarah E. Chasins
PLDI 2025

In traditional program synthesis, guarantees operate on one round of interaction.

In traditional program synthesis, guarantees operate on one round of interaction.

¢
—

In traditional program synthesis, guarantees operate on one round of interaction.

¢
—

In traditional program synthesis, guarantees operate on one round of interaction.

¢
—

—
/\ /\

e Soundness. Any returned program e satisfies the specification .

In traditional program synthesis, guarantees operate on one round of interaction.

¢
—

—
/\ /\

e Soundness. Any returned program e satisfies the specification ¢.

e Completeness. A program e is returned when at least one satisfying solution to the specification ¢ exists.

In traditional program synthesis, guarantees operate on one round of interaction.

¢
—

—
/\ /\

e Soundness. Any returned program e satisfies the specification ¢.
e Completeness. A program e is returned when at least one satisfying solution to the specification ¢ exists.

e What if we want to refine ¢?

In traditional program synthesis, guarantees operate on one round of interaction.

¢
—

Xe
—

/\ /\

e Soundness. Any returned program e satisfies the specification ¢.
e Completeness. A program e is returned when at least one satisfying solution to the specification ¢ exists.

e What if we want to refine ¢?

In traditional program synthesis, guarantees operate on one round of interaction.

¢
—

/('D'\‘B
- Xe
/\ /\

e Soundness. Any returned program e satisfies the specification .
e Completeness. A program e is returned when at least one satisfying solution to the specification ¢ exists.

e What if we want to refine ¢?

In traditional program synthesis, guarantees operate on one round of interaction.

¢
—

— , —
P
Xe
'_/
/7~ O\

/\\/

€

e Soundness. Any returned program e satisfies the specification .
e Completeness. A program e is returned when at least one satisfying solution to the specification ¢ exists.

e What if we want to refine ¢?

In traditional program synthesis, guarantees operate on one round of interaction.

e Soundness. Any returned program e satisfies the specification .

e Completeness. A program e is returned when at least one satisfying solution to the specification ¢ exists.

e What if we want to refine ¢?

In traditional program synthesis, guarantees operate on one round of interaction.

Soundness. Any returned program e satisfies the specification ¢.
Completeness. A program e is returned when at least one satisfying solution to the specification ¢ exists.
What it we want to refine ¢?

What guarantees can we get on the interaction as a whole?

In traditional program synthesis, guarantees operate on one round of interaction.

Soundness. Any returned program e satisfies the specification ¢.

Completeness. A program e is returned when at least one satisfying solution to the specification ¢ exists.
What it we want to refine ¢?

What guarantees can we get on the interaction as a whole?

Convergence. User will accept synthesis output in a finite number of rounds.

Existing interactive synthesis guarantees require well-behaved users.

Existing interactive synthesis guarantees require well-behaved users.

Abstraction-Based Interaction Model for Synthesis

Hila Peleg!, Shachar Itzhaky', and Sharon Shoham?

1 Technion, {hilap, shachari}@cs.technion.ac.il
2 Tel Aviv University, sharon.shoham@gmail.com

Definition 5 (User correctness). A user step, providing A; as an additional specifica-
tion, is correct when A; C {p € P | Im € U*.m F p}.

Definition 6 (Synthesis user). The behavior of the user includes the following guaran-
tees:

1. The user is correct for as long as they can be. If the user can no longer provide an
answer that is correct, they will answer L.
2. If a user sees a program in M™, they will accept it.

Definition 7 (Feasible synthesis session). A feasible synthesis session is a synthesis
session S = (Ao, ql),(A1,q2),. .. that satisfies the following:

(a) All A; are correct steps (deﬁnition or 1,

(b) q; = Select(S;—1), i.e. ¢; € v(S;—1)U{L}, where L signifies no possible program,
(c) If g € M* U { L} then S is finite and of length n, and

(d) In a finite S of length n, q, € M* U {L}

where item b| is a requirements for synthesizer correctness, and items a, c| and d are
requirements for user correctness.

Definition 8 (Convergence). A synthesis session (Ao, ql),(A1,q2),...,(An,qn) is
said to converge if v(S,) € M*. It has converged successfully if v(S,,) # 0.

Existing interactive synthesis guarantees require well-behaved users.

Abstraction-Based Interaction Model for Synthesis

Hila Peleg!, Shachar Itzhaky', and Sharon Shoham?

1 Technion, {hilap, shachari}@cs.technion.ac.il
2 Tel Aviv University, sharon.shoham@gmail.com

AS SumpthnS ab OUt user behaVIOr » Definition 5 (User correctness). A user step, providing A; as an additional specifica-

tion, is correct when A; C {p € P | Im € U*.m F p}.

Definition 6 (Synthesis user). The behavior of the user includes the following guaran-
tees:

» 1. The user is correct for as long as they can be. If the user can no longer provide an
answer that is correct, they will answer L.
» 2. If a user sees a program in M™, they will accept it.

Definition 7 (Feasible synthesis session). A feasible synthesis session is a synthesis
session S = (Ao, ql),(A1,q2),. .. that satisfies the following:

» (a) All A; are correct steps (deﬁnition or 1,
(b) q; = Select(S;—1), i.e. ¢; € v(S;—1)U{L}, where L signifies no possible program,

mm (c) If g, € M* U{L} then S is finite and of length n, and
» (d) In a finite S of length n, q, € M* U {L}

where item b| is a requirements for synthesizer correctness, and items a, c| and d are
requirements for user correctness.

Definition 8 (Convergence). A synthesis session (Ag,ql),(A1,q2),...,(An,qn) is
said to converge if v(S,) € M*. It has converged successfully if v(S,,) # 0.

Existing interactive synthesis guarantees require well-behaved users.

Abstraction-Based Interaction Model for Synthesis

Hila Peleg!, Shachar Itzhaky', and Sharon Shoham?

1 Technion, {hilap, shachari}@cs.technion.ac.il
2 Tel Aviv University, sharon.shoham@gmail.com

AS Sumptlons ab OUt user behaV]_Or » Definition 5 (User correctness). A user step, providing A; as an additional specifica-

tion, is correct when A; C {p € P | Im € U*.m F p}.

Definition 6 (Synthesis user). The behavior of the user includes the following guaran-
tees:

» 1. The user is correct for as long as they can be. If the user can no longer provide an
answer that is correct, they will answer L.
» 2. If a user sees a program in M™, they will accept it.

Definition 7 (Feasible synthesis session). A feasible synthesis session is a synthesis
session S = (Ao, ql),(A1,q2),. .. that satisfies the following:

» (a) All A; are correct steps (deﬁnition or 1,
(b) q; = Select(S;—1), i.e. ¢; € v(S;—1)U{L}, where L signifies no possible program,

mm (c) If g, € M* U{L} then S is finite and of length n, and
mml () In a finite S of lengthn, ¢, € M* U {L}

where item b| is a requirements for synthesizer correctness, and items a, c| and d are
requirements for user correctness.

Conve I ge nce gu ar ante e mmmlp> Definition 8 (Convergence). A synthesis session (Ag,ql), (A1, q2),...,(An,qn) is
said to converge if v(S,) € M*. It has converged successfully if v(S,,) # 0.

How could the user misbehave, and what could go wrong?

How could the user misbehave, and what could go wrong?

1. Refined specification could be unsatisfiable (¢' collapses to L).

How could the user misbehave, and what could go wrong?

1. Refined specification could be unsatisfiable (¢' collapses to L).

2. Synthesizer could render valid expressions inaccessible.

How could the user misbehave, and what could go wrong?

. Refined specification could be unsatisfiable (¢' collapses to L).
. Synthesizer could render valid expressions inaccessible.

. User could go down “rabbit hole” of refining a specification; the changes they’re

making never yield the program they want.

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

O— (%
X Q—(O<
9

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

jol®¢;
\\O\b ol o

e STRONG COMPLETENESS. All valid steps are shown.

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

VO
\\O\b > O*l
ot oy Jie

A
Vet
5

: e STRONG COMPLETENESS. All valid steps are shown.

%
2—0
ol e

xO*, 1

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

e STRONG COMPLETENESS. All valid steps are shown.

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

* e STRONG COMPLETENESS. All valid steps are shown.

e STRONG SOUNDNESS. Only valid steps are shown.

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

e STRONG COMPLETENESS. All valid steps are shown.

e STRONG SOUNDNESS. Only valid steps are shown.

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

e STRONG COMPLETENESS. All valid steps are shown.

e STRONG SOUNDNESS. Only valid steps are shown.

Question 1:
What are STRONG COMPLETENESS and STRONG SOUNDNESS?

Question 1:
What are STRONG COMPLETENESS and STRONG SOUNDNESS?

Question 2:
How do we achieve STRONG COMPLETENESS and STRONG SOUNDNESS?

Question 1:
What are STRONG COMPLETENESS and STRONG SOUNDNESS?

Steps are the building blocks for STRONG COMPLETENESS and STRONG SOUNDNESS.

O

Steps are the building blocks for STRONG COMPLETENESS and STRONG SOUNDNESS.

1 O)
%)\b ®

ROCRS
—~(O—

X oc

()

1
O' .
2 o Expressions e, steps o

%
OF

ot
S

OA

OB ‘

XO*,

5

Steps are the building blocks for STRONG COMPLETENESS and STRONG SOUNDNESS.

DO
\\O%) .
—~(O—=

X oc

1
O' .
2 o Expressions e, steps o

O'E*) o Validity: e valid

Q)

OA

OB .

Q

A 3

5

Steps are the building blocks for STRONG COMPLETENESS and STRONG SOUNDNESS.

o Expressions e, steps o
e Validity: e valid

. o . . .
o Step relation e; — e, (also written oe; = ¢2), induced relation e; < e-.

Steps are the building blocks for STRONG COMPLETENESS and STRONG SOUNDNESS.

o Expressions e, steps o
e Validity: e valid

. o . . .
o Step relation e; — e, (also written oe; = ¢2), induced relation e; < e-.

o Steps need to satisty mild conditions (such as determinism).

Step providers take the place of synthesizers.

Step providers take the place of synthesizers.

Step Provider

Step Decider

Step providers take the place of synthesizers.

Step Provider

Step Decider

Step providers take the place of synthesizers.

Step Provider

Step Decider

Step providers take the place of synthesizers.

Step Provider
X) / ¥ / . &\]1 /
Step Decider

Step providers take the place of synthesizers.

Step Provider
Step Decider

o A step provider S maps expressions to step sets.

Step providers take the place of synthesizers.

Step Provider
X / & / Ce &\]l /
Step Decider

o A step provider S maps expressions to step sets.

« An S-interaction is a finite sequence e, SENLN en such that o1 € S(er) forall 0 < k < N(and e is a

designated “blank program”).

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

o The completion of an expression eis C(e) ={e’ | e < e’ A e’ valid}.

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

\bod o The completion of an expression eis C(e) = {e’ | e < e’ A e’ valid}.

~0 >
—~(O—=C

ot
5

O'D* 1
)
OE

G
X

OA

OB .

Q

A4 3

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

boo o The completion of an expression eis C(e) ={e’ | e < e’ A e’ valid}.

O 9
—~O—1C

ot
5

() o A step set > covers an expression e if it satisfies:
GD* !

)
OE

CC
Q

OA

OB .

Q

A4 3

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

o The completion of an expression eis C(e) ={e’ | e < e’ A e’ valid}.
o A step set X covers an expression e if it satisfies:

e STRONG COMPLETENESS.

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

o The completion of an expression eis C(e) ={e’ | e < e’ A e’ valid}.
o A step set X covers an expression e if it satisfies:

e STRONG COMPLETENESS.

e STRONG SOUNDNESS.

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

o The completion of an expression eis C(e) ={e’ | e < e’ A e’ valid}.
o A step set X covers an expression e if it satisfies:

e STRONG COMPLETENESS.

C(e) \ {e} € Uyex Cloe)

e STRONG SOUNDNESS.

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

o The completion of an expression eis C(e) ={e’ | e < e’ A e’ valid}.
o A step set X covers an expression e if it satisfies:

e STRONG COMPLETENESS.

C(e)

e STRONG SOUNDNESS.

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

o The completion of an expression eis C(e) ={e’ | e < e’ A e’ valid}.

o A step set X covers an expression e if it satisfies:

UO'EZ C(O-e)

e STRONG COMPLETENESS.

e STRONG SOUNDNESS.

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

o The completion of an expression eis C(e) ={e’ | e < e’ A e’ valid}.
o A step set X covers an expression e if it satisfies:

e STRONG COMPLETENESS.

C(e) \ {e} € Uyex Cloe)

e STRONG SOUNDNESS.

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

o The completion of an expression eis C(e) ={e’ | e < e’ A e’ valid}.
o A step set X covers an expression e if it satisfies:

e STRONG COMPLETENESS.

C(e) \ {e} € Uyex Cloe)

e STRONG SOUNDNESS.

XX C(oe) # @forall o € >

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

o The completion of an expression eis C(e) = {e’ | e < e’ Ae’ valid}.
o A step set X covers an expression e if it satisfies:

e STRONG COMPLETENESS.

C(e) \ {e} € Uyex Cloe)

e STRONG SOUNDNESS.

xO C(oe) # @forall o € >

Problem Statement

A step provider S solves the Programming by Navigation Synthesis Problem if
S(en) covers ey for all S-interactions eg AN en.

Question 1:
What are STRONG COMPLETENESS and STRONG SOUNDNESS?

Question 1:
What are STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Properties of step providers in Programming by Navigation (in
particular, that they must show all and only the valid next steps).

Question 1:
What are STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Properties of step providers in Programming by Navigation (in

particular, that they must show all and only the valid next steps).

Question 2:
How do we achieve STRONG COMPLETENESS and STRONG SOUNDNESS?

Programming by Navigation for component-based synthesis with top-down steps.

Programming by Navigation for component-based synthesis with top-down steps.

Types

Programming by Navigation for component-based synthesis with top-down steps.

Types Functions

Programming by Navigation for component-based synthesis with top-down steps.

Types Functions Validity Conditions

Programming by Navigation for component-based synthesis with top-down steps.

Types Functions Validity Conditions

R{int)

Programming by Navigation for component-based synthesis with top-down steps.

Types Functions Validity Conditions

R{int)

R(2) could be... "the type of an integer

vector where each entry is the number

of times an RNA transcript appears in
tissue sample 2”

Programming by Navigation for component-based synthesis with top-down steps.

Types Functions Validity Conditions

R{int)

R(2) could be... "the type of an integer

vector where each entry is the number
of times an RNA transcript appears in
tissue sample 2”

R(90) could be... “the type of a

geospatial raster image with spatial

resolution of 90 meters? / pixel.”

Programming by Navigation for component-based synthesis with top-down steps.

Types Functions Validity Conditions

R{int) J:R—,R

R(2) could be... "the type of an integer

vector where each entry is the number
of times an RNA transcript appears in
tissue sample 2”

R(90) could be... “the type of a

geospatial raster image with spatial

resolution of 90 meters? / pixel.”

Programming by Navigation for component-based synthesis with top-down steps.

Types Functions Validity Conditions

R{int) J:R—,R

R(2) could be... "the type of an integer “Perform RNA-seq quality checks.”
vector where each entry is the number

of times an RNA transcript appears in
tissue sample 2”

R(90) could be... “the type of a

geospatial raster image with spatial

resolution of 90 meters? / pixel.”

Programming by Navigation for component-based synthesis with top-down steps.

Types Functions Validity Conditions

R({int) J:R—,R

R(2) could be... "the type of an integer “Perform RNA-seq quality checks.”
vector where each entry is the number

of times an RNA transcript appears in
tissue sample 2”

R(90) could be... “the type of a “Downsample the raster image.”
geospatial raster image with spatial

resolution of 90 meters? / pixel.”

Programming by Navigation for component-based synthesis with top-down steps.

Types Functions Validity Conditions
R{int) R — o B
R(2) could be... "the type of an integer “Perform RNA-seq quality checks.” ¢ = param, =T et
vector where each entry is the number ’

of times an RNA transcript appears in
tissue sample 2”

R(90) could be... “the type of a “Downsample the raster image.”
geospatial raster image with spatial

resolution of 90 meters? / pixel.”

Programming by Navigation for component-based synthesis with top-down steps.

Types Functions Validity Conditions
R{int) R — o B
R(2) could be... "the type of an integer “Perform RNA-seq quality checks.” ¢ = param, =T et
vector where each entry is the number ’

of times an RNA transcript appears in
tissue sample 2”

R(90) could be... “the type of a “Downsample the raster image.” (¢ .= param

< ret
geospatial raster image with spatial |

1

resolution of 90 meters? / pixel.”

Programming by Navigation for component-based synthesis with top-down steps.

Types Functions Validity conditions
R(int) [:() =0 R @, := S(rety)
T(int) f:R—, R @, := param, | = ret,
A(int> R R @3 := param , = ret; A param, = retr) A rety
M(int, int, bOOl) . . _:02 -, P4 :: param, , = ret; A param, , = ret A ret3 A 7param, ,
D(int, int) 1> 92 - ®> @5 = param, = ret; A param, , = ret
a,a,:R—, A

s:A—, T

c: ITXT—, M

b:M—, M

d:M—>(pSD

Validity is defined via a well-typing judgment for expressions.

Validity is defined via a well-typing judgment for expressions.

o Expressions are function applications or holes

Validity is defined via a well-typing judgment for expressions.

o Expressions are function applications or holes

o Functions applications are well-typed when the function’s validity condition is met.

Validity is defined via a well-typing judgment for expressions.

o Expressions are function applications or holes
o Functions applications are well-typed when the function’s validity condition is met.

e Only ground terms are well-typed (can’'t know if validity condition holds with a hole).

Validity is defined via a well-typing judgment for expressions.

o Expressions are function applications or holes
o Functions applications are well-typed when the function’s validity condition is met.

e Only ground terms are well-typed (can’'t know if validity condition holds with a hole).

WELL-TYPED/FUN

['(f)=11,....TN = T
Vi, j.v;; € vals(I') U vals(A) U vals(v)
A olor....o8:]
Vi.I,AFe;: Ti(l)_i)

A F (e, .. en) : (D)

Validity is defined via a well-typing judgment for expressions.

o Expressions are function applications or holes
o Functions applications are well-typed when the function’s validity condition is met.

e Only ground terms are well-typed (can’'t know if validity condition holds with a hole).

WELL-TYPED/FUN

A F (e, .. en) : (D)

Validity is defined via a well-typing judgment for expressions.

o Expressions are function applications or holes
o Functions applications are well-typed when the function’s validity condition is met.

e Only ground terms are well-typed (can’'t know if validity condition holds with a hole).

WELL-TYPED/FUN

Vi.I,AFe;: Ti(l)_i)

Validity is defined via a well-typing judgment for expressions.

o Expressions are function applications or holes
o Functions applications are well-typed when the function’s validity condition is met.

e Only ground terms are well-typed (can’'t know if validity condition holds with a hole).

WELL-TYPED/FUN

A Eolo,...,o8;0)

An example Programing by Navigation interaction for top-down steps.

An example Programing by Navigation interaction for top-down steps.

Goal type: D(1,2)

An example Programing by Navigation interaction for top-down steps.

Goal type: D(1,2)

Working sketch: ?,
Goal: 7, : D

An example Programing by Navigation interaction for top-down steps.

Goal type: D(1,2) All and only valid next steps

Working sketch: ?,
Goal: 7, : D

An example Programing by Navigation interaction for top-down steps.

Goal type: D(1,2) All and only valid next steps

Working sketch: ?,
Goal: ?, : D

. { ° ?1 —> dl’z(?z)

An example Programing by Navigation interaction for top-down steps.

Goal type: D(1,2) All and only valid next steps

Working sketch: ?,
Goal: ?, : D

' { ° ?1 —> dl’z(?z)

Working sketch: d L2 ?5)
Goal: 7, : M

An example Programing by Navigation interaction for top-down steps.

Goal type: D(1,2) All and only valid next steps

Working sketch: ?,
Goal: ?, : D

' { ° ?1 —> d1,2(?2)

Working sketch: d L2 ?5)
Goal: 7, : M

1,2,1
> { AR
1,2, T
e 2, bI2T(2,)

An example Programing by Navigation interaction for top-down steps.

Goal type: D(1,2) All and only valid next steps

Working sketch: ?,
Goal: ?, : D

' { ° ?1 —> d1,2(?2)

Working sketch: d L2 ?5)
Goal: 7, : M

1,2,1
> { AR
1,2, T
e 2, bI2T(2,)

An example Programing by Navigation interaction for top-down steps.

Synthesizer (step provider) needs to do this.

Goal type: D(1,2) All and only valid next steps

Working sketch: ?,
Goal: 7, : D

. { ° ?1 —> d1,2(?2)

Working sketch: d L2 ?5)
Goal: 7, : M

1,2,1
- { AR
1,2, T
e 2, bI2T(2,)

An example Programing by Navigation interaction for top-down steps.

Synthesizer (step provider) needs to do this.

Goal type: D(1,2) All and only valid next steps

Working sketch: ?,
Goal: 7, : D

. { ° ?1 —> d1,2(?2)

Working sketch: d L2 ?5)
Goal: 7, : M

1.2.1
o { pe
2 1,2, Tr9
* b (3) User chooses

among these.

An example Programing by Navigation interaction for top-down steps.

?
Synthesizer (step provider) needs to do this.

Goal type: D(1,2) All and only valid next steps

Working sketch: ?,
Goal: 7, : D

. { ° ?1 —> dl’z(?z)

Working sketch: d L2 ?5)
Goal: 7, : M

1.2.1
o { pe
2 1,2, Tc9
* b (3) User chooses

among these.

Cannot simply look at grammar induced by the simple types.

Cannot simply look at grammar induced by the simple types.

Cannot simply look at grammar induced by the simple types.

Goal:?,: D)

Incorrect!

Cannot enumerate solutions and store in trie-like data structure.

Cannot enumerate solutions and store in trie-like data structure.

d' (g (1M0), g7 (7))
d"*(c" g (110, g;(I°0)))
e (e (MO (0))))

Cannot enumerate solutions and store in trie-like data structure.

d"*(c">Hg ' 0), 7 (P0)))

d"* (g (' 0), g;(0))

d"* (g, 0D, g7 (T*0)))

d"* (g, ' 0), g3 (P0)))

d"* (2 (f (g A 0N, g7 (P0)))

e (e ORI NACHE)))

e e CHCH N A CHEO))
e (e CRCH AN HIEO)))

d" ("4 (s (ay (10D, g7 (P0)))

d" (s (@ 'O, g3 (P0N)

d" (s (ay (110D, g5 (1P0)))
d"*(b"> (g (1'0), 7 (P0))))
e Ul (L RN (R0))))
e el e CA A ONHEN)))

12,3127, 121, 1,71 2,12
d>=(b>=" (¢ (g,(170)), g5(17(0)))))
AL2cp L2, T A2, L el e 2 1al vy 22¢7200)))

Continues infinitely...

We really want to extend well-typing to non-ground termes...

WELL-TYPED/FUN

['(f)=71,...,TN —¢ T
Vi, j.vi; € vals(I') U vals(A) U vals(v)
Ak olor,....05:0]
Vi.T,AFe;:1(v;)

IAF (e, ..., en) : 7(0)

We really want to extend well-typing to non-ground terms...

WELL-TYPED/FUN

Vi.T, A+ e; : 71(0;)

We really want to extend well-typing to non-ground terms...

WELL-TYPED/FUN

° — .« L _9
Yi.]_—‘, A F e; : Ti(vi) Want: “or e; =7 and Je

such that premise holds”

We really want to extend well-typing to non-ground termes...

WELL-TYPED/FUN

Vi.T,AFe;:1(v;)

Want: “orej =? and Je
such that premise holds”

...but this existential makes

type-checking very much
not syntax-directed. ®

We really want to extend well-typing to non-ground termes...

e Key insight:

WELL-TYPED/FUN

Vi.T,AFe;:1(v;)

Want: “orej =? and Je
such that premise holds”

...but this existential makes

type-checking very much
not syntax-directed. ®

We really want to extend well-typing to non-ground termes...

WELL-TYPED/FUN

Vi.T, A+ e; : 71 (0;)

e Key insight: We need a type inhabitation oracle.

Want: “orej =? and Je
such that premise holds”

...but this existential makes

type-checking very much
not syntax-directed. ®

We really want to extend well-typing to non-ground termes...

WELL-TYPED/FUN

] U; Want: “ore; =7 =
VZ. F, A - el . Tl(vl) ant: ore and e

such that premise holds”

...but this existential makes
type-checking very much

not syntax-directed. ®

e Key insight: We need a type inhabitation oracle.

e Something that, when asked if a type is inhabited, responds “yes” or "no” (as in
classical logic) without needing to say what that inhabitant is (as in constructive logic).

We can leverage the Curry-Howard correspondence to implement a type
inhabitation oracle with fast proof engines like Datalog.

We can leverage the Curry-Howard correspondence to implement a type
inhabitation oracle with fast proof engines like Datalog.

o Represent types as propositions (true if inhabited), expressions as proofs.

We can leverage the Curry-Howard correspondence to implement a type
inhabitation oracle with fast proof engines like Datalog.
o Represent types as propositions (true if inhabited), expressions as proofs.

o From this perspective, oracle needs to determine if a proposition is true or false.

Crucially: We don't need to know a proof of the proposition, just its truth value.

We can leverage the Curry-Howard correspondence to implement a type
inhabitation oracle with fast proof engines like Datalog.
o Represent types as propositions (true if inhabited), expressions as proofs.

o From this perspective, oracle needs to determine if a proposition is true or false.

Crucially: We don't need to know a proof of the proposition, just its truth value.

o Then, we can use a fast proof engine that doesn’t give proofs...

We can leverage the Curry-Howard correspondence to implement a type
inhabitation oracle with fast proof engines like Datalog.
o Represent types as propositions (true if inhabited), expressions as proofs.

o From this perspective, oracle needs to determine if a proposition is true or false.

Crucially: We don't need to know a proof of the proposition, just its truth value.

o Then, we can use a fast proof engine that doesn’t give proofs... like Datalog!

We can leverage the Curry-Howard correspondence to implement a type
inhabitation oracle with fast proof engines like Datalog.
o Represent types as propositions (true if inhabited), expressions as proofs.

o From this perspective, oracle needs to determine if a proposition is true or false.

Crucially: We don't need to know a proof of the proposition, just its truth value.

o Then, we can use a fast proof engine that doesn’t give proofs... like Datalog!

JiR—,R with ¢ := param , <ret

We can leverage the Curry-Howard correspondence to implement a type
inhabitation oracle with fast proof engines like Datalog.
o Represent types as propositions (true if inhabited), expressions as proofs.

o From this perspective, oracle needs to determine if a proposition is true or false.

Crucially: We don't need to know a proof of the proposition, just its truth value.

o Then, we can use a fast proof engine that doesn’t give proofs... like Datalog!
R(x) x<y

f:R—,R with ¢ := param , <ret, l R(y)
Y

RULEf

We can leverage the Curry-Howard correspondence to implement a type
inhabitation oracle with fast proof engines like Datalog.
o Represent types as propositions (true if inhabited), expressions as proofs.

o From this perspective, oracle needs to determine if a proposition is true or false.

Crucially: We don't need to know a proof of the proposition, just its truth value.

o Then, we can use a fast proof engine that doesn’t give proofs... like Datalog!
R(x) x<y

f:R—,R with ¢ := param , <ret, l R(y)
Y

RULEf

Key invariant. For any function f, the following are equivalent:
1. Datalog proves t(v) with a derivation tree ending in RULEs

2. There exist expressions ei, ..., ex such that T, A+ f(eq, ..., en) : 7(0).

Question 1:
What are STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Properties of step providers in Programming by Navigation (in

particular, that they must show all and only the valid next steps).

Question 2:
How do we achieve STRONG COMPLETENESS and STRONG SOUNDNESS?

Question 2:
How do we achieve STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Use a classical-style inhabitation oracle. Leverage the Curry-
Howard correspondence to implement it with Datalog.

Our Programming by Navigation synthesizer, HONEYBEE, solves tasks that are
impossible or too large for baselines to solve.

Our Programming by Navigation synthesizer, HONEYBEE, solves tasks that are
impossible or too large for baselines to solve.

Pruned Enumeration Honeybee
(7/13 solved) (13/13 solved)

50 50 - 50 _
48 48 . 48
41 : %1 o 1w o -
42 A . 42 E 42
40 40 40
38 38 38

. v] 36 1] 36 - .

Benchmarks with ot - 2% %] o

a1 AT F =3 R

. < -] < -] < - _
nitely man S 5 - s %0 5 2
finitety G Bnl |
solutions. "]] g l : g
12 A 1 12 A . 12 A
10 - 1 10 - . 10
8 . 8 . 8
‘61: : 6: T Z:
| — 1 o]
0] - 2] e 21

o 2 4 6 8 o 2 4 6 8 o 2z 4 6 8

Our Programming by Navigation synthesizer, HONEYBEE, solves tasks that are
impossible or too large for baselines to solve.

Pruned Enumeration Honeybee
(7/13 solved) (13/13 solved)

30 50 - 50 _
48 1] 15 -] 48:
- - w| © 4
42 A . 42 1 T 42
3 ol 40

36 . 36 - - 36 - -

Benchmarks with 53]] s8] 531 o 1

= _ 2 i 2 _

v T 1) 1 .) | i
. = 267 =< 26 i = 267
finitely many S i ! £
20 - 1 k= 20: : = 20:
solutions. e | =] - =]
14 A -1 14 e 14
5] 3 B :

8 . 8 - 8 o
6 . 6 T 6
H— m 3] [T ;*
0 -1 0 - 0
0 2 4 6 8 0 2 ‘Il 6 8 0 2 4 6 8
Count Count Count

(8/8 solved)

not possible not possible i L
0 1 Ccfunt ’ 4

Benchmarks with
infinitely many

solutions.

Time taken (s)

Our Programming by Navigation synthesizer, HONEYBEE, solves tasks that are
impossible or too large for baselines to solve.

oo
o
oo
o

N
oS v
—>
e
oS v

NGNS IS Wle e
S U1 © U1 © U
NGNS IS Ble e N
S U1 O U1 © U

DN DN W W
S U1 O O
DN DN W W
S U1 O O

—
) —_
U1 © U
—

) —
U1 O U

—_ ’ —_
< <
= 0.75 = 0.75
Q Q
7 7
S 0.50 8 050
cu o
£ 0.25 £ 0.25
= ——0 “o—9o—90—0 90 —0—0—9©
0.00 T T T T T T T T 0.00 - T T T T T T T T
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
Depth of search space Breadth of search space
(for breadth = 5) (for depth = 5)

Naive Enumeration —4&— Pruned Enumeration —&— Honeybee

Programming by Navigation

Programming by Navigation

50% Q7 o

K
—O—
4

5

Programming by Navigation

e« STRONG COMPLETENESS and STRONG SOUNDNESS:
Nice goals, even when (provably) not fully possible...
... but can work even for messy settings!

Programming by Navigation

e« STRONG COMPLETENESS and STRONG SOUNDNESS:
Nice goals, even when (provably) not fully possible...
... but can work even for messy settings!

e« STRONG COMPLETENESS and STRONG SOUNDNESS:
Nice goals, even when (provably) not fully possible...
... but can work even for messy settings!

o Classical-style inhabitation oracles for synthesis:
Very powerful, if you can get away with it!

Programming by Navigation

e« STRONG COMPLETENESS and STRONG SOUNDNESS:
Nice goals, even when (provably) not fully possible...
... but can work even for messy settings!

o Classical-style inhabitation oracles for synthesis:
Very powerful, if you can get away with it!

e T would love to collaborate! ©

Programming by Navigation

e« STRONG COMPLETENESS and STRONG SOUNDNESS:
Nice goals, even when (provably) not fully possible...
... but can work even for messy settings!

o Classical-style inhabitation oracles for synthesis:
Very powerful, if you can get away with it!

e T would love to collaborate! ©

e (Connections we ve observed: structure editors, theorem

* * provers, rewrite systems + e-graphs, ...

Programming by Navigation

STRONG COMPLETENESS and STRONG SOUNDNESS:

Nice goals, even when (provably) not fully possible...
... but can work even for messy settings!

Classical-style inhabitation oracles for synthesis:
Very powerful, if you can get away with it!

I would love to collaborate! ©

e (Connections we ve observed: structure editors, theorem
provers, rewrite systems + e-graphes, ...

e HONEYBEE (and many other PL tools) are based on
constraint systems... 'm also very interested in
developing new PL theory to make them more usable.

Programming by Navigation

STRONG COMPLETENESS and STRONG SOUNDNESS:

Nice goals, even when (provably) not fully possible...
... but can work even for messy settings!

Classical-style inhabitation oracles for synthesis:
Very powerful, if you can get away with it!

I would love to collaborate! ©

e (Connections we ve observed: structure editors, theorem
provers, rewrite systems + e-graphes, ...

e HONEYBEE (and many other PL tools) are based on
constraint systems... 'm also very interested in
developing new PL theory to make them more usable.

Programming by Navigation

STRONG COMPLETENESS and STRONG SOUNDNESS:
Nice goals, even when (provably) not fully possible...

... but can work even for messy settings!

Classical-style inhabitation oracles for synthesis:
Very powerful, if you can get away with it!

I would love to collaborate! ©

e (Connections we ve observed: structure editors, theorem

provers, rewrite systems + e-graphes, ...

e HONEYBEE (and many other PL tools) are based on
constraint systems... 'm also very interested in
developing new PL theory to make them more usable.

Extra Slides

Exploring the Learnability of Program Synthesizers by Novice

Programmers
Dhanya Jayagopal® Justin Lubin® Sarah E. Chasins
dhanyajayagopal@berkeley.edu justinlubin@berkeley.edu schasins@cs.berkeley.edu
University of California, Berkeley University of California, Berkeley University of California, Berkeley
Berkeley, USA Berkeley, USA Berkeley, USA

ABSTRACT

Modern program synthesizers are increasingly delivering on their
promise of lightening the burden of programming by automatically
generating code, but little research has addressed how we can make
such systems learnable to all. In this work, we ask: What aspects
of program synthesizers contribute to and detract from their learn-
ability by novice programmers? We conducted a thematic analysis
of 22 observations of novice programmers, during which novices
worked with existing program synthesizers, then participated in
semi-structured interviews. Our findings shed light on how their
specific points in the synthesizer design space affect these tools’
learnability by novice programmers, including the type of specifi-
cation the synthesizer requires, the method of invoking synthesis
and receiving feedback, and the size of the specification. We also
describe common misconceptions about what constitutes meaning-
ful progress and useful specifications for the synthesizers, as well
as participants’ common behaviors and strategies for using these
tools. From this analysis, we offer a set of design opportunities
to inform the design of future program synthesizers that strive to
be learnable by novice programmers. This work serves as a first
step toward understanding how we can make program synthesizers
more learnable by novices, which opens up the possibility of using
program synthesizers in educational settings as well as developer
tooling oriented toward novice programmers.

KEYWORDS

learnability, program synthesis, novice programmers, qualitative,
thematic analysis

ACM Reference Format:

Dhanya Jayagopal, Justin Lubin, and Sarah E. Chasins. 2022. Exploring the
Learnability of Program Synthesizers by Novice Programmers. In The 35th
Annual ACM Symposium on User Interface Software and Technology (UIST
'22), October 29-November 2, 2022, Bend, OR, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3526113.3545659

* Authors contributed equally.

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST "22, October 29-November 2, 2022, Bend, OR, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9320-1/22/10.
https://doi.org/10.1145/3526113.3545659

1 INTRODUCTION

The promise of program synthesis is to lighten the burden of pro-
gramming by automatically generating code that satisfies a user-
provided specification. However, little work has studied how novice
programmers learn and use synthesis tools. Our work draws on
observations of early-stage programmers and identifies synthesizer
design dimensions that affect synthesizer learnability. The end goal
is to inform design guidelines so that the community can make
synthesizers more approachable and ultimately boost their impact
on a broader class of users.

We observed 22 novice programmers using five existing program
synthesis tools (BLue-PENcIL [48], CopiLoT [22], FLasH FILL [23],
REGAE [76], and SN1pPPY [15]) and followed each session with a
semi-structured interview.

We identified a number of influential design dimensions. One
such dimension is that synthesizers can (i) require users to engage
in a separate synthesis-specific specification mode or (ii) derive
a specification as a byproduct of normal non-synthesis tool use.
Another important dimension is whether users are in charge of
triggering synthesis runs and the display of synthesis outputs or
whether the tool is in charge. The size of the specification also
matters, but seemingly not as much other dimensions—a surprising
finding in light of design guidelines and goals from the synthesis
literature, which emphasize specification size [8, 23, 37, 43, 56].

We also identified important user knowledge gaps and common
strategies. Novices struggle with plan composition during synthesis
in much the same way as during manual coding. Novice program-
mers struggle to figure out what kinds of specifications work well
for a given synthesis tool. For synthesis tools embedded in familiar
environments, novice programmers may also borrow behaviors
from their pre-synthesizer use. Finally, novice programmers may
engage more deeply with synthesis-written programs relative to
teacher-written programs provided as exercise solutions.

Based on our findings, we provide a set of design opportunities
to inform the design of future program synthesizers that aim to be
learnable by novices.

No element of this paper is intended as an evaluation of the
tools used in the study. In particular, we note that the tools we
used in this study are not explicitly designed for learnability by
novice programmers. Rather, we chose a stable of tools that exhibit
different design choices for their synthesis algorithms, interfaces,
and user interaction models as a means to uncover patterns in how
these design choices affect users.

Learnability. A tool’s learnability can refer either to its (i) first-
encounter usability or (ii) how long its users take to gain proficiency.
In this paper, we are exclusively concerned with the first definition.

Exploring the Learnability of Program Synthesizers
by Novice Programmers.

Dhanya Jayagopal,” Justin Lubin,* Sarah E. Chasins.

In UIST 2022. (" equal contribution)

Existing interactive synthesis guarantees require well-behaved users.

Interactive Program Synthesis

Vu Le Daniel Perelman Oleksandr Polozov
Microsoft Corporation Microsoft Corporation University of Washington
levu@microsoft.com danpere@microsoft.com polozov@cs.washington.edu
Mohammad Raza Abhishek Udupa Sumit Gulwani
Microsoft Corporation Microsoft Corporation Microsoft Corporation
moraza@microsoft.com abudup@microsoft.com sumitg@microsoft.com

Let ©™ be a spec on the output symbol of L, called a task spec.
A ™ -driven interactive program synthesis process is a finite se-

ries of 4-tuples (No, @0, No, 20), - - -, (Nm, ©m, Nm, 2m), Where
e Each NV, is a nonterminal in L,
e Each ¢, 1s a spec on IV;,
e Each N; is some set of programs rooted at NV; s.t. N; Vs,
e Each 2; is an interaction state, explained below,

which satisfies the following axioms for any program P € L:
A. (PE ") = (P E ;) forany 0 < i < m;
B. (PEypj)=(PEy;)forany0<1i<j<ms.t N, =Nj.

We say that the process is converging iff the top-ranked program of
the last program set in the process satisfies the task spec:

Existing interactive synthesis guarantees require well-behaved users.

Interactive Program Synthesis

Vu Le Daniel Perelman Oleksandr Polozov
Microsoft Corporation Microsoft Corporation University of Washington
levu@microsoft.com danpere@microsoft.com polozov@cs.washington.edu
Mohammad Raza Abhishek Udupa Sumit Gulwani
Microsoft Corporation Microsoft Corporation Microsoft Corporation
moraza@microsoft.com abudup@microsoft.com sumitg@microsoft.com

Let ©™ be a spec on the output symbol of L, called a task spec.
A ™ -driven interactive program synthesis process is a finite se-

ries of 4-tuples (No, @0, No, 20), - - -, (Nm, ©m, Nm, 2m), Where
e Each NV, is a nonterminal in L,
e Each ¢, 1s a spec on IV;,
e Each N; is some set of programs rooted at NV; s.t. N; Vs,
e Each 2; is an interaction state, explained below,

which satisfies the following axioms for any program P € L:
A. (PE ") = (P E ;) forany 0 < i < m;
B. (PEypj)=(PEy;)forany0<1i<j<ms.t N, =Nj.

We say that the process is converging iff the top-ranked program of
the last program set in the process satisfies the task spec:

User correctness requirements —

Existing interactive synthesis guarantees require well-behaved users.

Interactive Program Synthesis

Vu Le Daniel Perelman Oleksandr Polozov
Microsoft Corporation Microsoft Corporation University of Washington
levu@microsoft.com danpere@microsoft.com polozov@cs.washington.edu
Mohammad Raza Abhishek Udupa Sumit Gulwani
Microsoft Corporation Microsoft Corporation Microsoft Corporation
moraza@microsoft.com abudup@microsoft.com sumitg@microsoft.com

Let ©™ be a spec on the output symbol of L, called a task spec.
A ™ -driven interactive program synthesis process is a finite se-

ries of 4-tuples (No, @0, No, 20), - - -, (Nm, ©m, Nm, 2m), Where
e Each NV, is a nonterminal in L,
e Each ¢, 1s a spec on IV;,
e Each N; is some set of programs rooted at NV; s.t. N; Vs,
e Each 2; is an interaction state, explained below,

which satisfies the following axioms for any program P € L:
: mmPp A. (PE=y")= (P Ey;)forany 0 < i < m;
User correctness requirements m— B (P)= (P o) forany 0 <i<j<mstN =N,
Convergence guarantee wsp-

We say that the process is converging iff the top-ranked program of
the last program set in the process satisfies the task spec:

Jha et al. (2010). Oracle-Guided Component-Based
Program Synthesis. In ICSE.

3. PROBLEM DEFINITION IterativeSynthesis () :
The goal is to synthesize a loop-free program using a given 1 // Input: Set of base components used in
set of base components and using input-ouput examples. We // comstruction of Behaver and Distinctg,r
assume the presence of an I/O oracle that can be queried on “ // Output: Candidate Program s
any input. The I/O oracle, when given an input, returns 4 £ = {(a0,Z(0))} // Pick any value ao for [
the output of the desired program (that we wish to syn- & Wwhile (1) {
thesize) on that input. We also assume th 6 L := T-SAT(Behaver(L));
7 if (L == 1) return "Components insufficient";
§ «:=T-SAT(Distinctp 1 (1));
9 if (a==1) {
10 P := Lval2Prog(L);
11 if (V(P)) return P;
12 else return "Components insufficient"; }
13 E:=FU{a,Z(x)}; }

Figure 3: Oracle-guided Synthesis Procedure

Blinn et al. (2022). An Integrative Human-Centered Architecture

for Interactive Programming Assistants. In VL/HCC.

let add : Int » (Int > Int) = = in
assert*((add 0 0) == 0)
assert2((add 0 1) == 1) 1
let add : Int » (Int »> Int) = =
assert2((add 0 0) == 0) Ax1.{:} [N
assert2((add 0 1) == 1) Aoy
2
let add : Int > (Int > Int) = BeRNAX1. {F) o » = x2 x1 add
assert2((add 0 0) == 0) x2 (Y
assert2((add 0 1) == 1) 11 92
let add : Int » (Int » Int) = Ax1.{Ax2.{x2}} in
assert’((add 0 0) == 0)
assert’'((add 0 1) == 1) 4

Over-specialized solution? Try some more assertions:

let add : Int > (Int > Int) = Ax1.{Ax2.{x2}} in
assert’((add 0 0) == 0)
assert’((add 0 1) == 1)
assert*((add 1 0) == 1)
assert*((add 2 2) == 4) 5

let add : Int »> (Int
assert~((add 0 0) =
assert*((add 0 1)
assert~((add 1 0)
assert2((add 2 2)

let add : Int »> (Int
assert~((add 0 0) ==
assert2((add 0 1)
assert~((add 1 0)
asserts((add 2 2)

let add : Int > (Int
assert~((add 0 0)
assert~((add 0 1)
assert2((add 1 0)
asserts((add 2 2)

5> Int) = Ax1.{1\x2.{m

0)
1)
1)
4)

> Int)
0)
1)
1)
4)

> Int)

1)
1)

case x1

| 0 =

| y1 =
let y1

case X2

| 0 =

| vi =
let y1

yl - 1 in

yl - 1 in

= 7\x1.{7\x2.{case x1
| 0 =

=x2 x1 add

= Ax1.{Ax2. {mcase il

| 0 = x2
| y1 =
let yl

=yl -1 in

= x2 x1 add
A

00
1 |
10
42

casing on x1 or x2 (3.6), and adding 1 before or after the recursive call (3.8). (3.9) shows the completed function

((add y1) (1 + x2))
(1 +)

Fig. 3. Hazel Live Assistant: Here we collaborate with the Smyth synthesizer to write a function to add Peano-representation integers. Here we are working
around the fact that the Smyth synthesizer supports only algebraic data types, which are not supported by Hazel; we translate the successor constructor to "+
1” and destructure a successor by subtracting 1. (3.1) portrays a stubbed-out function with two user-provided examples. (3.2-3.4) show the process of stepping
through a synthesis refinement tree: The user is offered a menu of options; at these stages there is only one suggested completion. The black panel displays
the unevaluated constraints which must be satisfied. (3.5) shows a finished but overspecialized solution; the user resolves this by stepping out of synthesis and
adding two more examples. (3.6-3.8) represent the result of deleting the ”x2” reference and resuming synthesis. This time the user has more options; either

A
A
A

let add :
Ax1.{
Ax2.{
case x1
| 0 = x2
| y1 =
let y1 = yl
((add y1) (1
end

Int > (Int

in

assert”((add 0 0)
assert”((add 0 1)
assert’((add 1 0)
assert”((add 2 2)

8

=yl x2 x1 add
10201 A

41 2 2N\

> Int) =

-1 1in
+ x2))

1)
1)
4)

Mayer et al. (2015). User Interaction Models for Disambiguation

in Programming by Example. In UIST.

To extract AuthorList from Record:
From the substring starting at the first occurrence of end of WhiteSpace,
extract the string ending at
<7the [~first occurrence of
~end of >Camel Case
in >the second line
Syl Program close

' +4 , -31the first occurrence of Dot after Camel Case

'+8,-21=the last occurrence of Dot after Camel Case in the secon
'+5, -24the first occurrence of Dot after DotoWhiteSpaceocCamel
'+1, -22the first occurrence of Dot after WhiteSpaceoCamel Case
| "+1, -227the first occurrence of Dot after AlphanumericoWhiteSpay

Figure 6: Program Viewer tab & alternative subexpressions.

Output

Program viewer Disambiguation

‘Author’ is currently ambiguous. Which highlighting is correct?

and and
D. €. Wang |or] D. C. Wang

Let me edit it myself

Figure 7: Conversational Clarification being used to disam-
biguate different programs that extract individual authors.

Extended Slides

Programming by Navigation can be thought of as a“semantic” structure editor.

e Programming by Navigation synthesizers satisfy the following theorem:

o Constructability. If e valid, then there exists an S-interaction

01 ON
g —> ++-—¢€

e Analogous to Omar et al. (2017)’s constructability theorem for the

Hazelnut structure editor calculus.

e Structure editors prevent steps that are syntactically invalid.

* * e Programming by Navigation prevents steps that are semantically

invalid (i.e., won’t lead to a valid solution).

Steps are the building blocks for STRONG COMPLETENESS and STRONG SOUNDNESS.

o Validity: e valid
o Steps: e; R e, (with induced relation e; < ey)
e Requirements for steps:

. . . , o
e Determinism. There is at most one ¢’ for each e and o such that e — ¢'.

e No loops. < is a strict partial order.

e Reachability. There exists a lower bound es.+ on the set of valid

expressions (a “blank program”).

Finite Between. Every infinite ascending chain ¢ < ¢; < -+ is unbounded.

Programming by Navigation Synthesizers have some nice properties for free!

e Fail Fast.

If there are no valid expressions, then S(esiart) = @.

e Progress (analogous to traditional progress theorem for A-calculus).

01 ON .
If there is at least one valid expression, and eo — -+ — eN is an S-interaction, then either e valid or S(esiart) # .

e (Constructability (analogous to Omar et al. 2017’s constructability theorem for the Hazelnut structure editor calculus).

. . . . 01 ON
If e valid, then there exists an S-interaction ey — -+ — e.

e Structure editors prevent steps that are syntactically invalid.

e Programming by Navigation prevents steps that are semantically invalid (i.e., won't lead to a valid solution).

Syntax and semantics for top-down steps.

Expressions e ::= f(e,...,enN) Steps 0 =7, ~ f(e,...,en)

e, — ey | o top-down steps e; to e,

STEP/EXTEND STEC:)_I;/ SEQ o
arity(f) =N ?,<e e — ¢ e/ — e
2w f(eq,....eN) 01:02 4y

e > [?n > f(er,...,en)]e € > €

An example Programing by Navigation interaction for top-down steps.

m Synthesizer (step provider) needs to do this.
Goal type: D(1,2) All and only valid next steps

Working sketch: 7, . o 7, d"(2,)
Goal: 7, : D {

Working sketch: d'(?2,) o 2, ¥ (2,,2)
Goal: 2, : M # 2, - bh>T(7)
oal. 5. * 2 "3 User chooses

among these.

Goal: 7, : M

Working sketch: d'*(b1*1(2,)) » { 2 (2, 2)

Cannot simply look at grammar induced by the simple types.

Goal: 7, : D

Incorrect!

Working sketch: d L2 ?5)
Goal: 7, : M

Working sketch: d'*(b1>1(2,))
Goal: 7, : M

| { 12402, 9,)
® bl,2,T(?3)

» {. cb2H(2:,2)

The paper irons out a some wrinkles...

Programming by Navigation

JUSTIN LUBIN, University of California, Berkeley, USA
PARKER ZIEGLER, University of California, Berkeley, USA
SARAH E. CHASINS, University of California, Berkeley, USA

When a program synthesis task starts from an ambiguous specification, the synthesis process often involves an
iterative specification refinement process. We introduce the Programming by Navigation Synthesis Problem, a
new synthesis problem adapted specifically for supporting iterative specification refinement in order to find a
particular target solution. In contrast to prior work, we prove that synthesizers that solve the Programming
by Navigation Synthesis Problem show all valid next steps (STRONG COMPLETENESS) and only valid next
steps (STRONG SOUNDNESS). To meet the demands of the Programming by Navigation Synthesis Problem, we
introduce an algorithm to turn a type inhabitation oracle (in the style of classical logic) into a fully constructive
program synthesizer. We then define such an oracle via sound compilation to Datalog. Our empirical evaluation
shows that this technique results in an efficient Programming by Navigation synthesizer that solves tasks
that are either impossible or too large for baselines to solve. Our synthesizer is the first to guarantee that its
specification refinement process satisfies both STRONG COMPLETENESS and STRONG SOUNDNESS.

CCS Concepts: » Software and its engineering — Automatic programming.
Additional Key Words and Phrases: Interactive Program Synthesis, Component-Based Synthesis, Datalog

ACM Reference Format:
Justin Lubin, Parker Ziegler, and Sarah E. Chasins. 2025. Programming by Navigation. Proc. ACM Program.
Lang. 9, PLDI, Article 165 (June 2025), 28 pages. https://doi.org/10.1145/3729264

1 Introduction

Program synthesis tasks often begin with an underspecification of a target program [38]. If we care
about refining this underspecification to reach not just any program but a particular program, then
program synthesizers can employ an iterative specification refinement process [55, 83]. Our work

The paper irons out a some wrinkles...

Programming by Navigation

JUSTIN LUBIN, University of California, Berkeley, USA
PARKER ZIEGLER, University of California, Berkeley, USA
SARAH E. CHASINS, University of California, Berkeley, USA

When a program synthesis task starts from an ambiguous specification, the synthesis process often involves an
iterative specification refinement process. We introduce the Programming by Navigation Synthesis Problem, a
new synthesis problem adapted specifically for supporting iterative specification refinement in order to find a
particular target solution. In contrast to prior work, we prove that synthesizers that solve the Programming
by Navigation Synthesis Problem show all valid next steps (STRONG COMPLETENESS) and only valid next
steps (STRONG SOUNDNESS). To meet the demands of the Programming by Navigation Synthesis Problem, we
introduce an algorithm to turn a type inhabitation oracle (in the style of classical logic) into a fully constructive
program synthesizer. We then define such an oracle via sound compilation to Datalog. Our empirical evaluation
shows that this technique results in an efficient Programming by Navigation synthesizer that solves tasks
that are either impossible or too large for baselines to solve. Our synthesizer is the first to guarantee that its
specification refinement process satisfies both STRONG COMPLETENESS and STRONG SOUNDNESS.

CCS Concepts: » Software and its engineering — Automatic programming.
Additional Key Words and Phrases: Interactive Program Synthesis, Component-Based Synthesis, Datalog

ACM Reference Format:
Justin Lubin, Parker Ziegler, and Sarah E. Chasins. 2025. Programming by Navigation. Proc. ACM Program.
Lang. 9, PLDI, Article 165 (June 2025), 28 pages. https://doi.org/10.1145/3729264

1 Introduction

Program synthesis tasks often begin with an underspecification of a target program [38]. If we care
about refining this underspecification to reach not just any program but a particular program, then
program synthesizers can employ an iterative specification refinement process [55, 83]. Our work

Problem: Need to handle entire sketches

with multiple interdependent holes

The paper irons out a some wrinkles...

Programming by Navigation

JUSTIN LUBIN, University of California, Berkeley, USA
PARKER ZIEGLER, University of California, Berkeley, USA
SARAH E. CHASINS, University of California, Berkeley, USA

When a program synthesis task starts from an ambiguous specification, the synthesis process often involves an
iterative specification refinement process. We introduce the Programming by Navigation Synthesis Problem, a
new synthesis problem adapted specifically for supporting iterative specification refinement in order to find a
particular target solution. In contrast to prior work, we prove that synthesizers that solve the Programming
by Navigation Synthesis Problem show all valid next steps (STRONG COMPLETENESS) and only valid next
steps (STRONG SOUNDNESS). To meet the demands of the Programming by Navigation Synthesis Problem, we
introduce an algorithm to turn a type inhabitation oracle (in the style of classical logic) into a fully constructive
program synthesizer. We then define such an oracle via sound compilation to Datalog. Our empirical evaluation
shows that this technique results in an efficient Programming by Navigation synthesizer that solves tasks
that are either impossible or too large for baselines to solve. Our synthesizer is the first to guarantee that its
specification refinement process satisfies both STRONG COMPLETENESS and STRONG SOUNDNESS.

CCS Concepts: » Software and its engineering — Automatic programming.
Additional Key Words and Phrases: Interactive Program Synthesis, Component-Based Synthesis, Datalog

ACM Reference Format:

Justin Lubin, Parker Ziegler, and Sarah E. Chasins. 2025. Programming by Navigation. Proc. ACM Program.
Lang. 9, PLDI, Article 165 (June 2025), 28 pages. https://doi.org/10.1145/3729264

1 Introduction

Program synthesis tasks often begin with an underspecification of a target program [38]. If we care
about refining this underspecification to reach not just any program but a particular program, then

nroocram svnthecizere can emnlov an iterative snecification refinement nrocecc | | Our work

Problem: Need to handle entire sketches

with multiple interdependent holes

Solution: Define “query” rules with a

corresponding key invariants

The paper irons out a some wrinkles...

Programming by Navigation

JUSTIN LUBIN, University of California, Berkeley, USA
PARKER ZIEGLER, University of California, Berkeley, USA
SARAH E. CHASINS, University of California, Berkeley, USA

When a program synthesis task starts from an ambiguous specification, the synthesis process often involves an
iterative specification refinement process. We introduce the Programming by Navigation Synthesis Problem, a
new synthesis problem adapted specifically for supporting iterative specification refinement in order to find a
particular target solution. In contrast to prior work, we prove that synthesizers that solve the Programming
by Navigation Synthesis Problem show all valid next steps (STRONG COMPLETENESS) and only valid next
steps (STRONG SOUNDNESS). To meet the demands of the Programming by Navigation Synthesis Problem, we
introduce an algorithm to turn a type inhabitation oracle (in the style of classical logic) into a fully constructive
program synthesizer. We then define such an oracle via sound compilation to Datalog. Our empirical evaluation
shows that this technique results in an efficient Programming by Navigation synthesizer that solves tasks
that are either impossible or too large for baselines to solve. Our synthesizer is the first to guarantee that its
specification refinement process satisfies both STRONG COMPLETENESS and STRONG SOUNDNESS.

CCS Concepts: » Software and its engineering — Automatic programming.

Additional Key Words and Phrases: Interactive Program Synthesis, Component-Based Synthesis, Datalog

ACM Reference Format:

Justin Lubin, Parker Ziegler, and Sarah E. Chasins. 2025. Programming by Navigation. Proc. ACM Program.
Lang. 9, PLDI, Article 165 (June 2025), 28 pages. https://doi.org/10.1145/3729264

1 Introduction

Program synthesis tasks often begin with an underspecification of a target program [38]. If we care
about refining this underspecification to reach not just any program but a particular program, then

s] .] § $ { ‘ $ [1 ']

Problem: Need to handle entire sketches

with multiple interdependent holes

Solution: Define “query” rules with a

corresponding key invariants

Problem: Need to determine exactly which
functions are valid expansions to show as a

step (not just that some expansion exists).

The paper irons out a some wrinkles...

Programming by Navigation

JUSTIN LUBIN, University of California, Berkeley, USA
PARKER ZIEGLER, University of California, Berkeley, USA
SARAH E. CHASINS, University of California, Berkeley, USA

When a program synthesis task starts from an ambiguous specification, the synthesis process often involves an
iterative specification refinement process. We introduce the Programming by Navigation Synthesis Problem, a
new synthesis problem adapted specifically for supporting iterative specification refinement in order to find a
particular target solution. In contrast to prior work, we prove that synthesizers that solve the Programming
by Navigation Synthesis Problem show all valid next steps (STRONG COMPLETENESS) and only valid next
steps (STRONG SOUNDNESS). To meet the demands of the Programming by Navigation Synthesis Problem, we
introduce an algorithm to turn a type inhabitation oracle (in the style of classical logic) into a fully constructive
program synthesizer. We then define such an oracle via sound compilation to Datalog. Our empirical evaluation
shows that this technique results in an efficient Programming by Navigation synthesizer that solves tasks
that are either impossible or too large for baselines to solve. Our synthesizer is the first to guarantee that its
specification refinement process satisfies both STRONG COMPLETENESS and STRONG SOUNDNESS.

CCS Concepts: » Software and its engineering — Automatic programming.
Additional Key Words and Phrases: Interactive Program Synthesis, Component-Based Synthesis, Datalog
ACM Reference Format:

Justin Lubin, Parker Ziegler, and Sarah E. Chasins. 2025. Programming by Navigation. Proc. ACM Program.

Lang. 9, PLDI, Article 165 (June 2025), 28 pages. https://doi.org/10.1145/3729264

1 Introduction
Program synthesis tasks often begin with an underspecification of a target program [38]. If we care
about refining this underspecification to reach not just any program but a particular program, then

Problem: Need to handle entire sketches

with multiple interdependent holes

Solution: Define “query” rules with a

corresponding key invariants

Problem: Need to determine exactly which
functions are valid expansions to show as a

step (not just that some expansion exists).

Solution: Use logical cuts (in the sense of
program fusion) to specialize the proof rules

appropriately.

