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• Soundness. Any returned program e satisfies the specification φ.

• Completeness. A program e is returned when at least one satisfying solution to the specification φ exists.

• What if we want to refine φ?

• What guarantees can we get on the interaction as a whole?

• Convergence. User will accept synthesis output in a finite number of rounds.
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How could the user misbehave, and what could go wrong?

1. Refined specification could be unsatisfiable (φ' collapses to ⊥).

2. Synthesizer could render valid expressions inaccessible.

3. User could go down “rabbit hole” of refining a specification; the changes they’re 
making never yield the program they want.
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• Expressions e, steps σ

• Validity: e valid

• Step relation              (also written σe1 = e2), induced relation e1 ≺ e2.

• Steps need to satisfy mild conditions (such as determinism).

Steps are the building blocks for STRONG COMPLETENESS and STRONG SOUNDNESS.
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Step providers take the place of synthesizers.

• A step provider  maps expressions to step sets.

• An -interaction is a finite sequence                                such that σk+1 ∈ (ek) for all 0 ≤ k < N (and e0 is a 
designated “blank program”).
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The Programming by Navigation Synthesis Problem defines 
STRONG COMPLETENESS and STRONG SOUNDNESS.

• The completion of an expression e is 

• A step set Σ covers an expression e if it satisfies:

• STRONG COMPLETENESS. 
 

• STRONG SOUNDNESS. 

A step provider  solves the Programming by Navigation Synthesis Problem if 

(eN) covers eN  for all -interactions                              .

Problem Statement
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l : () →φ1
R

f : R →φ2
R

t : R →φ2
R

q1, q2 : R →φ2
T

a1, a2 : R →φ2
A

s : A →φ2
T

c : T × T →φ3
M

b : M →φ4
M

d : M →φ5
D

 
 
 

 

R⟨int⟩
T⟨int⟩
A⟨int⟩
M⟨int, int, bool⟩
D⟨int, int⟩

Types Functions Validity conditions

 
 

 

 

φ1 := S(ret1)
φ2 := param1,1 = ret1

φ3 := param1,1 = ret1 ∧ param2,1 = ret2 ∧ ¬ret3

φ4 := param1,1 = ret1 ∧ param1,2 = ret2 ∧ ret3 ∧ ¬param1,3

φ5 := param1,1 = ret1 ∧ param2,1 = ret2

Programming by Navigation for component-based synthesis with top-down steps.
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Working sketch:  
                    Goal: 

?1
?1 : D

Working sketch:  
                    Goal: 

d1,2(?2)
?2 : M

Goal type: D⟨1,2⟩

•  
•

?2 ↦ c1,2,⊥(?3, ?4)
?2 ↦ b1,2,⊤(?3){

•  ?1 ↦ d1,2(?2){

⋮

Synthesizer (step provider) needs to do this.

User chooses 
among these.

How?

1

2

All and only valid next steps



Cannot simply look at grammar induced by the simple types.



σA

σB
σC

?1

D

Cannot simply look at grammar induced by the simple types.

 Goal: ?1 : D



σA

σB
σC

?1

D

Cannot simply look at grammar induced by the simple types.

 Goal: ?1 : D
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We really want to extend well-typing to non-ground terms…

Want: “or ei = ? and ∃e 
such that premise holds” 

…but this existential makes 
type-checking very much 
not syntax-directed. ☹

• Key insight: We need a type inhabitation oracle.

• Something that, when asked if a type is inhabited, responds “yes” or “no” (as in 
classical logic) without needing to say what that inhabitant is (as in constructive logic).
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• Represent types as propositions (true if inhabited), expressions as proofs.

• From this perspective, oracle needs to determine if a proposition is true or false. 
Crucially: We don’t need to know a proof of the proposition, just its truth value.

• Then, we can use a fast proof engine that doesn’t give proofs… like Datalog!

We can leverage the Curry-Howard correspondence to implement a type 
inhabitation oracle with fast proof engines like Datalog.

Key invariant. For any function f, the following are equivalent: 

1. Datalog proves  with a derivation tree ending in RULEf. 

2. There exist expressions e1, …, eN such that 

τ(v)

  with  f : R →φ R φ := param1,1 < ret1
       R(x) x < y

R(y)
RULEf
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Exploring the Learnability of Program Synthesizers 
by Novice Programmers. 

Dhanya Jayagopal,* Justin Lubin,* Sarah E. Chasins. 

In UIST 2022. (* equal contribution)
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User correctness requirements
Convergence guarantee

Existing interactive synthesis guarantees require well-behaved users.



Jha et al. (2010). Oracle-Guided Component-Based 
Program Synthesis. In ICSE.



Blinn et al. (2022). An Integrative Human-Centered Architecture 
for Interactive Programming Assistants. In VL/HCC.



Mayer et al. (2015). User Interaction Models for Disambiguation 
in Programming by Example. In UIST.
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• Programming by Navigation synthesizers satisfy the following theorem: 

• Constructability. If e valid, then there exists an -interaction 
 

• Analogous to Omar et al. (2017)’s constructability theorem for the 
Hazelnut structure editor calculus. 

• Structure editors prevent steps that are syntactically invalid. 

• Programming by Navigation prevents steps that are semantically 
invalid (i.e., won’t lead to a valid solution).

Programming by Navigation can be thought of as a “semantic” structure editor.
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• Validity: e valid 

• Steps:               (with induced relation e1 ≺ e2) 

• Requirements for steps: 

• Determinism. There is at most one e' for each e and σ such that           . 

• No loops. ≺ is a strict partial order. 

• Reachability. There exists a lower bound estart on the set of valid 
expressions (a “blank program”). 

• Finite Between. Every infinite ascending chain e0 ≺ e1 ≺ ⋯ is unbounded.

Steps are the building blocks for STRONG COMPLETENESS and STRONG SOUNDNESS.



Programming by Navigation Synthesizers have some nice properties for free!

• Fail Fast. 

If there are no valid expressions, then (estart) = ∅. 

• Progress (analogous to traditional progress theorem for 𝜆-calculus). 

If there is at least one valid expression, and                              is an -interaction, then either eN valid or (estart) ≠ ∅. 

• Constructability (analogous to Omar et al. 2017’s constructability theorem for the Hazelnut structure editor calculus). 

If e valid, then there exists an -interaction                            . 

• Structure editors prevent steps that are syntactically invalid. 

• Programming by Navigation prevents steps that are semantically invalid (i.e., won't lead to a valid solution).



Syntax and semantics for top-down steps.



An example Programing by Navigation interaction for top-down steps.

Working sketch:  
                    Goal: 

?1
?1 : D

Working sketch:  
                    Goal: 

d1,2(?2)
?2 : M

Goal type: D⟨1,2⟩

Working sketch:  
                    Goal: 

d1,2(b1,2,⊤(?3))
?3 : M

•  ?3 ↦ c1,2,⊥(?3, ?4){

•  
•

?2 ↦ c1,2,⊥(?3, ?4)
?2 ↦ b1,2,⊤(?3){

•  ?1 ↦ d1,2(?2){

⋮

Synthesizer (step provider) needs to do this.

User chooses 
among these.

How?

1

2

3

All and only valid next steps
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Cannot simply look at grammar induced by the simple types.

 Goal: ?1 : D
Incorrect!

Working sketch:  
                    Goal: 

d1,2(?2)
?2 : M

Working sketch:  
                    Goal: 

d1,2(b1,2,⊤(?3))
?3 : M

•  c1,2,⊥(?3, ?4){

•  
•

c1,2,⊥(?3, ?4)
b1,2,⊤(?3){2

3
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The paper irons out a some wrinkles…

• Problem: Need to handle entire sketches 
with multiple interdependent holes

• Solution: Define “query” rules with a 
corresponding key invariants 

• Problem: Need to determine exactly which 
functions are valid expansions to show as a 
step (not just that some expansion exists).

• Solution: Use logical cuts (in the sense of 
program fusion) to specialize the proof rules 
appropriately.




