
Programming by Navigation
Justin Lubin, Parker Ziegler, Sarah E. Chasins

PLDI 2025

In traditional program synthesis, guarantees operate on one round of interaction.

In traditional program synthesis, guarantees operate on one round of interaction.

φ

In traditional program synthesis, guarantees operate on one round of interaction.

φ

e

• Soundness. Any returned program e satisfies the specification φ.

In traditional program synthesis, guarantees operate on one round of interaction.

φ

e

• Soundness. Any returned program e satisfies the specification φ.

• Completeness. A program e is returned when at least one satisfying solution to the specification φ exists.

In traditional program synthesis, guarantees operate on one round of interaction.

φ

e

• Soundness. Any returned program e satisfies the specification φ.

• Completeness. A program e is returned when at least one satisfying solution to the specification φ exists.

• What if we want to refine φ?

In traditional program synthesis, guarantees operate on one round of interaction.

φ

e

• Soundness. Any returned program e satisfies the specification φ.

• Completeness. A program e is returned when at least one satisfying solution to the specification φ exists.

• What if we want to refine φ?

In traditional program synthesis, guarantees operate on one round of interaction.

φ

e

• Soundness. Any returned program e satisfies the specification φ.

• Completeness. A program e is returned when at least one satisfying solution to the specification φ exists.

• What if we want to refine φ?

In traditional program synthesis, guarantees operate on one round of interaction.

φ

e

φ'

• Soundness. Any returned program e satisfies the specification φ.

• Completeness. A program e is returned when at least one satisfying solution to the specification φ exists.

• What if we want to refine φ?

In traditional program synthesis, guarantees operate on one round of interaction.

φ

e'

e

φ'

• Soundness. Any returned program e satisfies the specification φ.

• Completeness. A program e is returned when at least one satisfying solution to the specification φ exists.

• What if we want to refine φ?

In traditional program synthesis, guarantees operate on one round of interaction.

φ

e'

e

φ'

• Soundness. Any returned program e satisfies the specification φ.

• Completeness. A program e is returned when at least one satisfying solution to the specification φ exists.

• What if we want to refine φ?

• What guarantees can we get on the interaction as a whole?

In traditional program synthesis, guarantees operate on one round of interaction.

φ

e'

e

φ'

• Soundness. Any returned program e satisfies the specification φ.

• Completeness. A program e is returned when at least one satisfying solution to the specification φ exists.

• What if we want to refine φ?

• What guarantees can we get on the interaction as a whole?

• Convergence. User will accept synthesis output in a finite number of rounds.

In traditional program synthesis, guarantees operate on one round of interaction.

φ

e'

e

φ'

Existing interactive synthesis guarantees require well-behaved users.

Existing interactive synthesis guarantees require well-behaved users.

Assumptions about user behavior

Existing interactive synthesis guarantees require well-behaved users.

Assumptions about user behavior

Convergence guarantee

Existing interactive synthesis guarantees require well-behaved users.

How could the user misbehave, and what could go wrong?

φ

e'

e

φ'

How could the user misbehave, and what could go wrong?

1. Refined specification could be unsatisfiable (φ' collapses to ⊥).

φ

e'

e

φ'

How could the user misbehave, and what could go wrong?

1. Refined specification could be unsatisfiable (φ' collapses to ⊥).

2. Synthesizer could render valid expressions inaccessible.

φ

e'

e

φ'

How could the user misbehave, and what could go wrong?

1. Refined specification could be unsatisfiable (φ' collapses to ⊥).

2. Synthesizer could render valid expressions inaccessible.

3. User could go down “rabbit hole” of refining a specification; the changes they’re
making never yield the program they want.

φ

e'

e

φ'

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

σA

σB
σC

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

σA

σB
σC

• STRONG COMPLETENESS. All valid steps are shown.

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

σA

σB
σC

• STRONG COMPLETENESS. All valid steps are shown.

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

σA

σB
σC

• STRONG COMPLETENESS. All valid steps are shown.

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

σA

σB
σC

• STRONG COMPLETENESS. All valid steps are shown.

• STRONG SOUNDNESS. Only valid steps are shown.

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

σA

σB
σC

• STRONG COMPLETENESS. All valid steps are shown.

• STRONG SOUNDNESS. Only valid steps are shown.

Instead, we propose STRONG COMPLETENESS and STRONG SOUNDNESS.

σA

σB
σC

σD

σE • STRONG COMPLETENESS. All valid steps are shown.

• STRONG SOUNDNESS. Only valid steps are shown.

Question 1:
What are STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Properties of step providers in Programming by Navigation (they
must show all and only valid next steps).

Question 2:
How do we achieve STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Use a classical-style oracle. Leverage the Curry-Howard
correspondence to implement it with Datalog.

Question 1:
What are STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Properties of step providers in Programming by Navigation (they
must show all and only valid next steps).

Question 2:
How do we achieve STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Use a classical-style oracle. Leverage the Curry-Howard
correspondence to implement it with Datalog.

Question 1:
What are STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Properties of step providers in Programming by Navigation (they
must show all and only valid next steps).

σA

σB
σC

σD

σE

Steps are the building blocks for STRONG COMPLETENESS and STRONG SOUNDNESS.

σA

σB
σC

σD

σE

• Expressions e, steps σ

Steps are the building blocks for STRONG COMPLETENESS and STRONG SOUNDNESS.

σA

σB
σC

σD

σE

• Expressions e, steps σ

• Validity: e valid

Steps are the building blocks for STRONG COMPLETENESS and STRONG SOUNDNESS.

σA

σB
σC

σD

σE

• Expressions e, steps σ

• Validity: e valid

• Step relation (also written σe1 = e2), induced relation e1 ≺ e2.

Steps are the building blocks for STRONG COMPLETENESS and STRONG SOUNDNESS.

σA

σB
σC

σD

σE

• Expressions e, steps σ

• Validity: e valid

• Step relation (also written σe1 = e2), induced relation e1 ≺ e2.

• Steps need to satisfy mild conditions (such as determinism).

Steps are the building blocks for STRONG COMPLETENESS and STRONG SOUNDNESS.

Step providers take the place of synthesizers.

Step providers take the place of synthesizers.

Step providers take the place of synthesizers.

Step providers take the place of synthesizers.

Step providers take the place of synthesizers.

Step providers take the place of synthesizers.

• A step provider maps expressions to step sets.

Step providers take the place of synthesizers.

• A step provider maps expressions to step sets.

• An -interaction is a finite sequence such that σk+1 ∈ (ek) for all 0 ≤ k < N (and e0 is a
designated “blank program”).

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

• The completion of an expression e is

σA

σB
σC

σD

σE

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

• The completion of an expression e is

σA

σB
σC

σD

σE

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

• The completion of an expression e is

• A step set Σ covers an expression e if it satisfies:

σA

σB
σC

σD

σE

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

• The completion of an expression e is

• A step set Σ covers an expression e if it satisfies:

• STRONG COMPLETENESS.

σA

σB
σC

σD

σE

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

• The completion of an expression e is

• A step set Σ covers an expression e if it satisfies:

• STRONG COMPLETENESS.

• STRONG SOUNDNESS.

σA

σB
σC

σD

σE

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

• The completion of an expression e is

• A step set Σ covers an expression e if it satisfies:

• STRONG COMPLETENESS.

• STRONG SOUNDNESS.

σA

σB
σC

σD

σE

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

• The completion of an expression e is

• A step set Σ covers an expression e if it satisfies:

• STRONG COMPLETENESS.

• STRONG SOUNDNESS.

σA

σB
σC

σD

σE

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

• The completion of an expression e is

• A step set Σ covers an expression e if it satisfies:

• STRONG COMPLETENESS.

• STRONG SOUNDNESS.

σA

σB
σC

σD

σE

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

• The completion of an expression e is

• A step set Σ covers an expression e if it satisfies:

• STRONG COMPLETENESS.

• STRONG SOUNDNESS.

σA

σB
σC

σD

σE

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

• The completion of an expression e is

• A step set Σ covers an expression e if it satisfies:

• STRONG COMPLETENESS.

• STRONG SOUNDNESS.

σA

σB
σC

σD

σE

The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

• The completion of an expression e is

• A step set Σ covers an expression e if it satisfies:

• STRONG COMPLETENESS.

• STRONG SOUNDNESS.

A step provider solves the Programming by Navigation Synthesis Problem if

(eN) covers eN for all -interactions .

Problem Statement

Question 2:
How do we achieve STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Use a classical-style oracle. Leverage the Curry-Howard
correspondence to implement it with Datalog.

Question 1:
What are STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Properties of step providers in Programming by Navigation (in
particular, that they must show all and only the valid next steps).

Question 2:
How do we achieve STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Use a classical-style oracle. Leverage the Curry-Howard
correspondence to implement it with Datalog.

Question 1:
What are STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Properties of step providers in Programming by Navigation (in
particular, that they must show all and only the valid next steps).

Question 2:
How do we achieve STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Use a classical-style oracle. Leverage the Curry-Howard
correspondence to implement it with Datalog.

Question 1:
What are STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Properties of step providers in Programming by Navigation (in
particular, that they must show all and only the valid next steps).

Programming by Navigation for component-based synthesis with top-down steps.

Programming by Navigation for component-based synthesis with top-down steps.

Types

Programming by Navigation for component-based synthesis with top-down steps.

Types Functions

Programming by Navigation for component-based synthesis with top-down steps.

Types Functions Validity Conditions

Programming by Navigation for component-based synthesis with top-down steps.

R⟨int⟩

Types Functions Validity Conditions

Programming by Navigation for component-based synthesis with top-down steps.

R⟨int⟩

Types Functions Validity Conditions

 could be… “the type of an integer
vector where each entry is the number
of times an RNA transcript appears in
tissue sample 2”

R⟨2⟩

Programming by Navigation for component-based synthesis with top-down steps.

R⟨int⟩

Types Functions Validity Conditions

 could be… “the type of an integer
vector where each entry is the number
of times an RNA transcript appears in
tissue sample 2”

R⟨2⟩

 could be… “the type of a
geospatial raster image with spatial
resolution of 90 meters2 / pixel.”

R⟨90⟩

Programming by Navigation for component-based synthesis with top-down steps.

f : R →φ RR⟨int⟩

Types Functions Validity Conditions

 could be… “the type of an integer
vector where each entry is the number
of times an RNA transcript appears in
tissue sample 2”

R⟨2⟩

 could be… “the type of a
geospatial raster image with spatial
resolution of 90 meters2 / pixel.”

R⟨90⟩

Programming by Navigation for component-based synthesis with top-down steps.

f : R →φ RR⟨int⟩

Types Functions Validity Conditions

 could be… “the type of an integer
vector where each entry is the number
of times an RNA transcript appears in
tissue sample 2”

R⟨2⟩

 could be… “the type of a
geospatial raster image with spatial
resolution of 90 meters2 / pixel.”

R⟨90⟩

“Perform RNA-seq quality checks.”

Programming by Navigation for component-based synthesis with top-down steps.

f : R →φ RR⟨int⟩

Types Functions Validity Conditions

 could be… “the type of an integer
vector where each entry is the number
of times an RNA transcript appears in
tissue sample 2”

R⟨2⟩

 could be… “the type of a
geospatial raster image with spatial
resolution of 90 meters2 / pixel.”

R⟨90⟩

“Perform RNA-seq quality checks.”

“Downsample the raster image.”

Programming by Navigation for component-based synthesis with top-down steps.

f : R →φ RR⟨int⟩

φ := param1,1 = ret1

Types Functions Validity Conditions

 could be… “the type of an integer
vector where each entry is the number
of times an RNA transcript appears in
tissue sample 2”

R⟨2⟩

 could be… “the type of a
geospatial raster image with spatial
resolution of 90 meters2 / pixel.”

R⟨90⟩

“Perform RNA-seq quality checks.”

“Downsample the raster image.”

Programming by Navigation for component-based synthesis with top-down steps.

f : R →φ RR⟨int⟩

φ := param1,1 < ret1

φ := param1,1 = ret1

Types Functions Validity Conditions

 could be… “the type of an integer
vector where each entry is the number
of times an RNA transcript appears in
tissue sample 2”

R⟨2⟩

 could be… “the type of a
geospatial raster image with spatial
resolution of 90 meters2 / pixel.”

R⟨90⟩

“Perform RNA-seq quality checks.”

“Downsample the raster image.”

l : () →φ1
R

f : R →φ2
R

t : R →φ2
R

q1, q2 : R →φ2
T

a1, a2 : R →φ2
A

s : A →φ2
T

c : T × T →φ3
M

b : M →φ4
M

d : M →φ5
D

R⟨int⟩
T⟨int⟩
A⟨int⟩
M⟨int, int, bool⟩
D⟨int, int⟩

Types Functions Validity conditions

φ1 := S(ret1)
φ2 := param1,1 = ret1

φ3 := param1,1 = ret1 ∧ param2,1 = ret2 ∧ ¬ret3

φ4 := param1,1 = ret1 ∧ param1,2 = ret2 ∧ ret3 ∧ ¬param1,3

φ5 := param1,1 = ret1 ∧ param2,1 = ret2

Programming by Navigation for component-based synthesis with top-down steps.

Validity is defined via a well-typing judgment for expressions.

Validity is defined via a well-typing judgment for expressions.

• Expressions are function applications or holes

Validity is defined via a well-typing judgment for expressions.

• Expressions are function applications or holes

• Functions applications are well-typed when the function’s validity condition is met.

Validity is defined via a well-typing judgment for expressions.

• Expressions are function applications or holes

• Functions applications are well-typed when the function’s validity condition is met.

• Only ground terms are well-typed (can’t know if validity condition holds with a hole).

Validity is defined via a well-typing judgment for expressions.

• Expressions are function applications or holes

• Functions applications are well-typed when the function’s validity condition is met.

• Only ground terms are well-typed (can’t know if validity condition holds with a hole).

Validity is defined via a well-typing judgment for expressions.

• Expressions are function applications or holes

• Functions applications are well-typed when the function’s validity condition is met.

• Only ground terms are well-typed (can’t know if validity condition holds with a hole).

Validity is defined via a well-typing judgment for expressions.

• Expressions are function applications or holes

• Functions applications are well-typed when the function’s validity condition is met.

• Only ground terms are well-typed (can’t know if validity condition holds with a hole).

Validity is defined via a well-typing judgment for expressions.

• Expressions are function applications or holes

• Functions applications are well-typed when the function’s validity condition is met.

• Only ground terms are well-typed (can’t know if validity condition holds with a hole).

An example Programing by Navigation interaction for top-down steps.

An example Programing by Navigation interaction for top-down steps.

Goal type: D⟨1,2⟩

An example Programing by Navigation interaction for top-down steps.

Working sketch:
 Goal:

?1
?1 : D

Goal type: D⟨1,2⟩

1

An example Programing by Navigation interaction for top-down steps.

Working sketch:
 Goal:

?1
?1 : D

Goal type: D⟨1,2⟩

1

All and only valid next steps

An example Programing by Navigation interaction for top-down steps.

Working sketch:
 Goal:

?1
?1 : D

Goal type: D⟨1,2⟩

• ?1 ↦ d1,2(?2){1

All and only valid next steps

An example Programing by Navigation interaction for top-down steps.

Working sketch:
 Goal:

?1
?1 : D

Working sketch:
 Goal:

d1,2(?2)
?2 : M

Goal type: D⟨1,2⟩

• ?1 ↦ d1,2(?2){1

2

All and only valid next steps

An example Programing by Navigation interaction for top-down steps.

Working sketch:
 Goal:

?1
?1 : D

Working sketch:
 Goal:

d1,2(?2)
?2 : M

Goal type: D⟨1,2⟩

•
•

?2 ↦ c1,2,⊥(?3, ?4)
?2 ↦ b1,2,⊤(?3){

• ?1 ↦ d1,2(?2){1

2

All and only valid next steps

An example Programing by Navigation interaction for top-down steps.

Working sketch:
 Goal:

?1
?1 : D

Working sketch:
 Goal:

d1,2(?2)
?2 : M

Goal type: D⟨1,2⟩

•
•

?2 ↦ c1,2,⊥(?3, ?4)
?2 ↦ b1,2,⊤(?3){

• ?1 ↦ d1,2(?2){

⋮

1

2

All and only valid next steps

An example Programing by Navigation interaction for top-down steps.

Working sketch:
 Goal:

?1
?1 : D

Working sketch:
 Goal:

d1,2(?2)
?2 : M

Goal type: D⟨1,2⟩

•
•

?2 ↦ c1,2,⊥(?3, ?4)
?2 ↦ b1,2,⊤(?3){

• ?1 ↦ d1,2(?2){

⋮

Synthesizer (step provider) needs to do this.

1

2

All and only valid next steps

An example Programing by Navigation interaction for top-down steps.

Working sketch:
 Goal:

?1
?1 : D

Working sketch:
 Goal:

d1,2(?2)
?2 : M

Goal type: D⟨1,2⟩

•
•

?2 ↦ c1,2,⊥(?3, ?4)
?2 ↦ b1,2,⊤(?3){

• ?1 ↦ d1,2(?2){

⋮

Synthesizer (step provider) needs to do this.

User chooses
among these.

1

2

All and only valid next steps

An example Programing by Navigation interaction for top-down steps.

Working sketch:
 Goal:

?1
?1 : D

Working sketch:
 Goal:

d1,2(?2)
?2 : M

Goal type: D⟨1,2⟩

•
•

?2 ↦ c1,2,⊥(?3, ?4)
?2 ↦ b1,2,⊤(?3){

• ?1 ↦ d1,2(?2){

⋮

Synthesizer (step provider) needs to do this.

User chooses
among these.

How?

1

2

All and only valid next steps

Cannot simply look at grammar induced by the simple types.

σA

σB
σC

?1

D

Cannot simply look at grammar induced by the simple types.

 Goal: ?1 : D

σA

σB
σC

?1

D

Cannot simply look at grammar induced by the simple types.

 Goal: ?1 : D
Incorrect!

Cannot enumerate solutions and store in trie-like data structure.

d1,2(b1,2,⊤(c1,2,⊥(s1
1(a1

2(l1())), q2
2(l2()))))

Cannot enumerate solutions and store in trie-like data structure.

d1,2(c1,2,⊥(q1
1(l1()), q2

1(l2())))

d1,2(c1,2,⊥(q1
1(l1()), q2

2(l2())))

d1,2(c1,2,⊥(q1
2(l1()), q2

1(l2())))

d1,2(b1,2,⊤(c1,2,⊥(s1
1(a1

2(l1())), q2
2(l2()))))

Cannot enumerate solutions and store in trie-like data structure.

d1,2(c1,2,⊥(q1
1(l1()), q2

1(l2())))

d1,2(c1,2,⊥(q1
1(l1()), q2

2(l2())))

d1,2(c1,2,⊥(q1
2(l1()), q2

1(l2())))

d1,2(b1,2,⊤(c1,2,⊥(s1
1(a1

2(l1())), q2
2(l2()))))

Continues infinitely…

d1,2(c1,2,⊥(q1
2(l1()), q2

2(l2())))

d1,2(c1,2,⊥(s1(a1
1(l1())), q2

1(l2())))

d1,2(c1,2,⊥(s1(a1
2(l1())), q2

1(l2())))

d1,2(c1,2,⊥(s1
1(a1

1(l1())), q2
2(l2())))

d1,2(c1,2,⊥(s1
1(a1

2(l1())), q2
2(l2())))

d1,2(c1,2,⊥(f1(q1
1(l1())), q2

1(l2())))

d1,2(c1,2,⊥(f1(q1
1(l1())), f1(q2

1(l2()))))

d1,2(c1,2,⊥(q1
1(l1())), f1(q2

1(l2()))))

d1,2(b1,2,⊤(c1,2,⊥(q1
1(l1()), q2

1(l2()))))

d1,2(b1,2,⊤(c1,2,⊥(q1
1(l1()), q2

2(l2()))))

d1,2(b1,2,⊤(c1,2,⊥(q1
2(l1()), q2

1(l2()))))

d1,2(b1,2,⊤(c1,2,⊥(q1
2(l1()), q2

2(l2()))))

d1,2(b1,2,⊤(c1,2,⊥(s1(a1
1(l1())), q2

1(l2()))))

d1,2(b1,2,⊤(c1,2,⊥(f1(q1
1(l1())), q2

1(l2()))))

d1,2(b1,2,⊤(c1,2,⊥(f1(q1
1(l1())), f1(q2

1(l2())))))

d1,2(b1,2,⊤(c1,2,⊥(q1
1(l1())), f1(q2

1(l2())))))

We really want to extend well-typing to non-ground terms…

We really want to extend well-typing to non-ground terms…

We really want to extend well-typing to non-ground terms…

Want: “or ei = ? and ∃e
such that premise holds”

We really want to extend well-typing to non-ground terms…

Want: “or ei = ? and ∃e
such that premise holds”

…but this existential makes
type-checking very much
not syntax-directed. ☹

We really want to extend well-typing to non-ground terms…

Want: “or ei = ? and ∃e
such that premise holds”

…but this existential makes
type-checking very much
not syntax-directed. ☹

• Key insight: We need a type inhabitation oracle.

We really want to extend well-typing to non-ground terms…

Want: “or ei = ? and ∃e
such that premise holds”

…but this existential makes
type-checking very much
not syntax-directed. ☹

• Key insight: We need a type inhabitation oracle.

We really want to extend well-typing to non-ground terms…

Want: “or ei = ? and ∃e
such that premise holds”

…but this existential makes
type-checking very much
not syntax-directed. ☹

• Key insight: We need a type inhabitation oracle.

• Something that, when asked if a type is inhabited, responds “yes” or “no” (as in
classical logic) without needing to say what that inhabitant is (as in constructive logic).

We can leverage the Curry-Howard correspondence to implement a type
inhabitation oracle with fast proof engines like Datalog.

• Represent types as propositions (true if inhabited), expressions as proofs.

We can leverage the Curry-Howard correspondence to implement a type
inhabitation oracle with fast proof engines like Datalog.

• Represent types as propositions (true if inhabited), expressions as proofs.

• From this perspective, oracle needs to determine if a proposition is true or false.
Crucially: We don’t need to know a proof of the proposition, just its truth value.

We can leverage the Curry-Howard correspondence to implement a type
inhabitation oracle with fast proof engines like Datalog.

• Represent types as propositions (true if inhabited), expressions as proofs.

• From this perspective, oracle needs to determine if a proposition is true or false.
Crucially: We don’t need to know a proof of the proposition, just its truth value.

• Then, we can use a fast proof engine that doesn’t give proofs… like Datalog!

We can leverage the Curry-Howard correspondence to implement a type
inhabitation oracle with fast proof engines like Datalog.

• Represent types as propositions (true if inhabited), expressions as proofs.

• From this perspective, oracle needs to determine if a proposition is true or false.
Crucially: We don’t need to know a proof of the proposition, just its truth value.

• Then, we can use a fast proof engine that doesn’t give proofs… like Datalog!

We can leverage the Curry-Howard correspondence to implement a type
inhabitation oracle with fast proof engines like Datalog.

• Represent types as propositions (true if inhabited), expressions as proofs.

• From this perspective, oracle needs to determine if a proposition is true or false.
Crucially: We don’t need to know a proof of the proposition, just its truth value.

• Then, we can use a fast proof engine that doesn’t give proofs… like Datalog!

We can leverage the Curry-Howard correspondence to implement a type
inhabitation oracle with fast proof engines like Datalog.

 with f : R →φ R φ := param1,1 < ret1

• Represent types as propositions (true if inhabited), expressions as proofs.

• From this perspective, oracle needs to determine if a proposition is true or false.
Crucially: We don’t need to know a proof of the proposition, just its truth value.

• Then, we can use a fast proof engine that doesn’t give proofs… like Datalog!

We can leverage the Curry-Howard correspondence to implement a type
inhabitation oracle with fast proof engines like Datalog.

 with f : R →φ R φ := param1,1 < ret1
 R(x) x < y

R(y)
RULEf

• Represent types as propositions (true if inhabited), expressions as proofs.

• From this perspective, oracle needs to determine if a proposition is true or false.
Crucially: We don’t need to know a proof of the proposition, just its truth value.

• Then, we can use a fast proof engine that doesn’t give proofs… like Datalog!

We can leverage the Curry-Howard correspondence to implement a type
inhabitation oracle with fast proof engines like Datalog.

Key invariant. For any function f, the following are equivalent:

1. Datalog proves with a derivation tree ending in RULEf.

2. There exist expressions e1, …, eN such that

τ(v)

 with f : R →φ R φ := param1,1 < ret1
 R(x) x < y

R(y)
RULEf

Question 2:
How do we achieve STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Use a classical-style inhabitation oracle. Leverage the Curry-
Howard correspondence to implement it with Datalog.

Question 1:
What are STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Properties of step providers in Programming by Navigation (in
particular, that they must show all and only the valid next steps).

Question 2:
How do we achieve STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Use a classical-style inhabitation oracle. Leverage the Curry-
Howard correspondence to implement it with Datalog.

Question 1:
What are STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Properties of step providers in Programming by Navigation (in
particular, that they must show all and only the valid next steps).

Wrap-up

Our Programming by Navigation synthesizer, HONEYBEE, solves tasks that are
impossible or too large for baselines to solve.

Benchmarks with
finitely many

solutions.

Naïve Enumeration
(1/13 solved)

Pruned Enumeration
(7/13 solved)

Honeybee
(13/13 solved)

Our Programming by Navigation synthesizer, HONEYBEE, solves tasks that are
impossible or too large for baselines to solve.

Benchmarks with
finitely many

solutions.

Naïve Enumeration
(1/13 solved)

Pruned Enumeration
(7/13 solved)

Honeybee
(13/13 solved)

Our Programming by Navigation synthesizer, HONEYBEE, solves tasks that are
impossible or too large for baselines to solve.

(8/8 solved)

not possible not possible

Benchmarks with
infinitely many

solutions.

Our Programming by Navigation synthesizer, HONEYBEE, solves tasks that are
impossible or too large for baselines to solve.

Programming by Navigation

σA

σB
σC

σD

σE

Programming by Navigation

σA

σB
σC

σD

σE

• STRONG COMPLETENESS and STRONG SOUNDNESS:
Nice goals, even when (provably) not fully possible…
… but can work even for messy settings!

Programming by Navigation

σA

σB
σC

σD

σE

• STRONG COMPLETENESS and STRONG SOUNDNESS:
Nice goals, even when (provably) not fully possible…
… but can work even for messy settings!

Programming by Navigation

σA

σB
σC

σD

σE

• STRONG COMPLETENESS and STRONG SOUNDNESS:
Nice goals, even when (provably) not fully possible…
… but can work even for messy settings!

• Classical-style inhabitation oracles for synthesis:
Very powerful, if you can get away with it!

Programming by Navigation

σA

σB
σC

σD

σE

• STRONG COMPLETENESS and STRONG SOUNDNESS:
Nice goals, even when (provably) not fully possible…
… but can work even for messy settings!

• Classical-style inhabitation oracles for synthesis:
Very powerful, if you can get away with it!

• I would love to collaborate! ☺︎

Programming by Navigation

σA

σB
σC

σD

σE

• STRONG COMPLETENESS and STRONG SOUNDNESS:
Nice goals, even when (provably) not fully possible…
… but can work even for messy settings!

• Classical-style inhabitation oracles for synthesis:
Very powerful, if you can get away with it!

• I would love to collaborate! ☺︎

• Connections we’ve observed: structure editors, theorem
provers, rewrite systems + e-graphs, …

Programming by Navigation

σA

σB
σC

σD

σE

• STRONG COMPLETENESS and STRONG SOUNDNESS:
Nice goals, even when (provably) not fully possible…
… but can work even for messy settings!

• Classical-style inhabitation oracles for synthesis:
Very powerful, if you can get away with it!

• I would love to collaborate! ☺︎

• Connections we’ve observed: structure editors, theorem
provers, rewrite systems + e-graphs, …

• HONEYBEE (and many other PL tools) are based on
constraint systems… I’m also very interested in
developing new PL theory to make them more usable.

Programming by Navigation

σA

σB
σC

σD

σE

• STRONG COMPLETENESS and STRONG SOUNDNESS:
Nice goals, even when (provably) not fully possible…
… but can work even for messy settings!

• Classical-style inhabitation oracles for synthesis:
Very powerful, if you can get away with it!

• I would love to collaborate! ☺︎

• Connections we’ve observed: structure editors, theorem
provers, rewrite systems + e-graphs, …

• HONEYBEE (and many other PL tools) are based on
constraint systems… I’m also very interested in
developing new PL theory to make them more usable.

Programming by Navigation

σA

σB
σC

σD

σE

• STRONG COMPLETENESS and STRONG SOUNDNESS:
Nice goals, even when (provably) not fully possible…
… but can work even for messy settings!

• Classical-style inhabitation oracles for synthesis:
Very powerful, if you can get away with it!

• I would love to collaborate! ☺︎

• Connections we’ve observed: structure editors, theorem
provers, rewrite systems + e-graphs, …

• HONEYBEE (and many other PL tools) are based on
constraint systems… I’m also very interested in
developing new PL theory to make them more usable.

Programming by Navigation

Extra Slides

Exploring the Learnability of Program Synthesizers
by Novice Programmers.

Dhanya Jayagopal,* Justin Lubin,* Sarah E. Chasins.

In UIST 2022. (* equal contribution)

Existing interactive synthesis guarantees require well-behaved users.

User correctness requirements

Existing interactive synthesis guarantees require well-behaved users.

User correctness requirements
Convergence guarantee

Existing interactive synthesis guarantees require well-behaved users.

Jha et al. (2010). Oracle-Guided Component-Based
Program Synthesis. In ICSE.

Blinn et al. (2022). An Integrative Human-Centered Architecture
for Interactive Programming Assistants. In VL/HCC.

Mayer et al. (2015). User Interaction Models for Disambiguation
in Programming by Example. In UIST.

Extended Slides

σA

σB
σC

σD

σE

• Programming by Navigation synthesizers satisfy the following theorem:

• Constructability. If e valid, then there exists an -interaction

• Analogous to Omar et al. (2017)’s constructability theorem for the
Hazelnut structure editor calculus.

• Structure editors prevent steps that are syntactically invalid.

• Programming by Navigation prevents steps that are semantically
invalid (i.e., won’t lead to a valid solution).

Programming by Navigation can be thought of as a “semantic” structure editor.

σA

σB
σC

σD

σE

• Validity: e valid

• Steps: (with induced relation e1 ≺ e2)

• Requirements for steps:

• Determinism. There is at most one e' for each e and σ such that .

• No loops. ≺ is a strict partial order.

• Reachability. There exists a lower bound estart on the set of valid
expressions (a “blank program”).

• Finite Between. Every infinite ascending chain e0 ≺ e1 ≺ ⋯ is unbounded.

Steps are the building blocks for STRONG COMPLETENESS and STRONG SOUNDNESS.

Programming by Navigation Synthesizers have some nice properties for free!

• Fail Fast.

If there are no valid expressions, then (estart) = ∅.

• Progress (analogous to traditional progress theorem for 𝜆-calculus).

If there is at least one valid expression, and is an -interaction, then either eN valid or (estart) ≠ ∅.

• Constructability (analogous to Omar et al. 2017’s constructability theorem for the Hazelnut structure editor calculus).

If e valid, then there exists an -interaction .

• Structure editors prevent steps that are syntactically invalid.

• Programming by Navigation prevents steps that are semantically invalid (i.e., won't lead to a valid solution).

Syntax and semantics for top-down steps.

An example Programing by Navigation interaction for top-down steps.

Working sketch:
 Goal:

?1
?1 : D

Working sketch:
 Goal:

d1,2(?2)
?2 : M

Goal type: D⟨1,2⟩

Working sketch:
 Goal:

d1,2(b1,2,⊤(?3))
?3 : M

• ?3 ↦ c1,2,⊥(?3, ?4){

•
•

?2 ↦ c1,2,⊥(?3, ?4)
?2 ↦ b1,2,⊤(?3){

• ?1 ↦ d1,2(?2){

⋮

Synthesizer (step provider) needs to do this.

User chooses
among these.

How?

1

2

3

All and only valid next steps

σA

σB
σC

?1

D

Cannot simply look at grammar induced by the simple types.

 Goal: ?1 : D
Incorrect!

Working sketch:
 Goal:

d1,2(?2)
?2 : M

Working sketch:
 Goal:

d1,2(b1,2,⊤(?3))
?3 : M

• c1,2,⊥(?3, ?4){

•
•

c1,2,⊥(?3, ?4)
b1,2,⊤(?3){2

3

The paper irons out a some wrinkles…

The paper irons out a some wrinkles…

• Problem: Need to handle entire sketches
with multiple interdependent holes

The paper irons out a some wrinkles…

• Problem: Need to handle entire sketches
with multiple interdependent holes

• Solution: Define “query” rules with a
corresponding key invariants

The paper irons out a some wrinkles…

• Problem: Need to handle entire sketches
with multiple interdependent holes

• Solution: Define “query” rules with a
corresponding key invariants

• Problem: Need to determine exactly which
functions are valid expansions to show as a
step (not just that some expansion exists).

The paper irons out a some wrinkles…

• Problem: Need to handle entire sketches
with multiple interdependent holes

• Solution: Define “query” rules with a
corresponding key invariants

• Problem: Need to determine exactly which
functions are valid expansions to show as a
step (not just that some expansion exists).

• Solution: Use logical cuts (in the sense of
program fusion) to specialize the proof rules
appropriately.

