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In traditional program synthesis, guarantees operate on one round of interaction.

Soundness. Any returned program e satisfies the specification ¢.

Completeness. A program e is returned when at least one satisfying solution to the specification ¢ exists.
What it we want to refine ¢?

What guarantees can we get on the interaction as a whole?

Convergence. User will accept synthesis output in a finite number of rounds.
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Definition 5 (User correctness). A user step, providing A; as an additional specifica-
tion, is correct when A; C {p € P | Im € U*.m F p}.

Definition 6 (Synthesis user). The behavior of the user includes the following guaran-
tees:

1. The user is correct for as long as they can be. If the user can no longer provide an
answer that is correct, they will answer L.
2. If a user sees a program in M™, they will accept it.

Definition 7 (Feasible synthesis session). A feasible synthesis session is a synthesis
session S = (Ao, ql),(A1,q2),. .. that satisfies the following:

(a) All A; are correct steps ( deﬁnition or 1,

(b) q; = Select(S;—1), i.e. ¢; € v(S;—1)U{L}, where L signifies no possible program,
(c) If g € M* U { L} then S is finite and of length n, and

(d) In a finite S of length n, q, € M* U {L}

where item b| is a requirements for synthesizer correctness, and items a, c| and d are
requirements for user correctness.

Definition 8 (Convergence). A synthesis session (Ao, ql),(A1,q2),...,(An,qn) is
said to converge if v(S,) € M*. It has converged successfully if v(S,,) # 0.
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How could the user misbehave, and what could go wrong?

. Refined specification could be unsatisfiable (¢' collapses to L).
. Synthesizer could render valid expressions inaccessible.

. User could go down “rabbit hole” of refining a specification; the changes they’re

making never yield the program they want.
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Steps are the building blocks for STRONG COMPLETENESS and STRONG SOUNDNESS.

o Expressions e, steps o
e Validity: e valid

. o . . .
o Step relation e; — e, (also written oe; = ¢2), induced relation e; < e-.

o Steps need to satisty mild conditions (such as determinism).
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Step providers take the place of synthesizers.

Step Provider
X / & / Ce &\]l /
Step Decider

o A step provider S maps expressions to step sets.

« An S-interaction is a finite sequence e, SENLN en such that o1 € S(er) forall 0 < k < N(and e is a

designated “blank program”).
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The Programming by Navigation Synthesis Problem defines
STRONG COMPLETENESS and STRONG SOUNDNESS.

o The completion of an expression eis C(e) = {e’ | e < e’ Ae’ valid}.
o A step set X covers an expression e if it satisfies:

e STRONG COMPLETENESS.

C(e) \ {e} € Uyex Cloe)

e STRONG SOUNDNESS.

*xO* C(oe) # @forall o € >

Problem Statement

A step provider S solves the Programming by Navigation Synthesis Problem if
S(en) covers ey for all S-interactions eg AN en.
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Answer: Properties of step providers in Programming by Navigation (in

particular, that they must show all and only the valid next steps).

Question 2:
How do we achieve STRONG COMPLETENESS and STRONG SOUNDNESS?
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Programming by Navigation for component-based synthesis with top-down steps.

Types Functions Validity conditions
R(int) [:() =0 R @, := S(rety)
T(int) f:R—, R @, := param, | = ret,
A(int> R R @3 := param , = ret; A param, = retr) A rety
M(int, int, bOOl) . . _:02 -, P4 :: param, , = ret; A param, , = ret A ret3 A 7param, ,
D(int, int) 1> 92 - ®> @5 = param, = ret; A param, , = ret
a,a,:R—, A

s:A—, T

c: ITXT—, M

b:M—, M

d:M—>(pSD
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Validity is defined via a well-typing judgment for expressions.

o Expressions are function applications or holes
o Functions applications are well-typed when the function’s validity condition is met.

e Only ground terms are well-typed (can’'t know if validity condition holds with a hole).

WELL-TYPED/FUN
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d"*(c">Hg ' 0), 7 (P0)))

d"* (g (' 0), g;(0))

d"* (g, 0D, g7 (T*0)))

d"* (g, ' 0), g3 (P0)))

d"* (2 (f (g A 0N, g7 (P0)))

e (e ORI NACHE)))

e e CHCH N A CHEO))
e (e CRCH AN HIEO)))

d" ("4 (s (ay (10D, g7 (P0)))

d" (s (@ 'O, g3 (P0N)

d" (s (ay (110D, g5 (1P0)))
d"*(b"> (g (1'0), 7 (P0))))
e Ul (L RN (R0))))
e el e CA A ONHEN)))

12,3127, 121, 1,71 2,12
d>=(b>=" (¢ (g,(170)), g5(17(0)))))
AL2cp L2, T A2, L el e 2 1al vy 22¢7200)))

Continues infinitely...
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We really want to extend well-typing to non-ground termes...

WELL-TYPED/FUN
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such that premise holds”

...but this existential makes
type-checking very much

not syntax-directed. ®

e Key insight: We need a type inhabitation oracle.

e Something that, when asked if a type is inhabited, responds “yes” or "no” (as in
classical logic) without needing to say what that inhabitant is (as in constructive logic).
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We can leverage the Curry-Howard correspondence to implement a type
inhabitation oracle with fast proof engines like Datalog.
o Represent types as propositions (true if inhabited), expressions as proofs.

o From this perspective, oracle needs to determine if a proposition is true or false.

Crucially: We don't need to know a proof of the proposition, just its truth value.

o Then, we can use a fast proof engine that doesn’t give proofs... like Datalog!
R(x) x<y

f:R—,R with ¢ := param , <ret, l R(y)
Y

RULEf

Key invariant. For any function f, the following are equivalent:
1. Datalog proves t(v) with a derivation tree ending in RULEs

2. There exist expressions ei, ..., ex such that T, A+ f(eq, ..., en) : 7(0).




Question 1:
What are STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Properties of step providers in Programming by Navigation (in

particular, that they must show all and only the valid next steps).

Question 2:
How do we achieve STRONG COMPLETENESS and STRONG SOUNDNESS?




Question 2:
How do we achieve STRONG COMPLETENESS and STRONG SOUNDNESS?

Answer: Use a classical-style inhabitation oracle. Leverage the Curry-
Howard correspondence to implement it with Datalog.
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ABSTRACT

Modern program synthesizers are increasingly delivering on their
promise of lightening the burden of programming by automatically
generating code, but little research has addressed how we can make
such systems learnable to all. In this work, we ask: What aspects
of program synthesizers contribute to and detract from their learn-
ability by novice programmers? We conducted a thematic analysis
of 22 observations of novice programmers, during which novices
worked with existing program synthesizers, then participated in
semi-structured interviews. Our findings shed light on how their
specific points in the synthesizer design space affect these tools’
learnability by novice programmers, including the type of specifi-
cation the synthesizer requires, the method of invoking synthesis
and receiving feedback, and the size of the specification. We also
describe common misconceptions about what constitutes meaning-
ful progress and useful specifications for the synthesizers, as well
as participants’ common behaviors and strategies for using these
tools. From this analysis, we offer a set of design opportunities
to inform the design of future program synthesizers that strive to
be learnable by novice programmers. This work serves as a first
step toward understanding how we can make program synthesizers
more learnable by novices, which opens up the possibility of using
program synthesizers in educational settings as well as developer
tooling oriented toward novice programmers.
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1 INTRODUCTION

The promise of program synthesis is to lighten the burden of pro-
gramming by automatically generating code that satisfies a user-
provided specification. However, little work has studied how novice
programmers learn and use synthesis tools. Our work draws on
observations of early-stage programmers and identifies synthesizer
design dimensions that affect synthesizer learnability. The end goal
is to inform design guidelines so that the community can make
synthesizers more approachable and ultimately boost their impact
on a broader class of users.

We observed 22 novice programmers using five existing program
synthesis tools (BLue-PENcIL [48], CopiLoT [22], FLasH FILL [23],
REGAE [76], and SN1pPPY [15]) and followed each session with a
semi-structured interview.

We identified a number of influential design dimensions. One
such dimension is that synthesizers can (i) require users to engage
in a separate synthesis-specific specification mode or (ii) derive
a specification as a byproduct of normal non-synthesis tool use.
Another important dimension is whether users are in charge of
triggering synthesis runs and the display of synthesis outputs or
whether the tool is in charge. The size of the specification also
matters, but seemingly not as much other dimensions—a surprising
finding in light of design guidelines and goals from the synthesis
literature, which emphasize specification size [8, 23, 37, 43, 56].

We also identified important user knowledge gaps and common
strategies. Novices struggle with plan composition during synthesis
in much the same way as during manual coding. Novice program-
mers struggle to figure out what kinds of specifications work well
for a given synthesis tool. For synthesis tools embedded in familiar
environments, novice programmers may also borrow behaviors
from their pre-synthesizer use. Finally, novice programmers may
engage more deeply with synthesis-written programs relative to
teacher-written programs provided as exercise solutions.

Based on our findings, we provide a set of design opportunities
to inform the design of future program synthesizers that aim to be
learnable by novices.

No element of this paper is intended as an evaluation of the
tools used in the study. In particular, we note that the tools we
used in this study are not explicitly designed for learnability by
novice programmers. Rather, we chose a stable of tools that exhibit
different design choices for their synthesis algorithms, interfaces,
and user interaction models as a means to uncover patterns in how
these design choices affect users.

Learnability. A tool’s learnability can refer either to its (i) first-
encounter usability or (ii) how long its users take to gain proficiency.
In this paper, we are exclusively concerned with the first definition.

Exploring the Learnability of Program Synthesizers
by Novice Programmers.

Dhanya Jayagopal,” Justin Lubin,* Sarah E. Chasins.

In UIST 2022. (" equal contribution)



Existing interactive synthesis guarantees require well-behaved users.
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Let ©™ be a spec on the output symbol of L, called a task spec.
A ™ -driven interactive  program synthesis process is a finite se-

ries of 4-tuples (No, @0, No, 20), - - -, (Nm, ©m, Nm, 2m), Where
e Each NV, is a nonterminal in L,
e Each ¢, 1s a spec on IV;,
e Each N; is some set of programs rooted at NV; s.t. N; Vs,
e Each 2; is an interaction state, explained below,

which satisfies the following axioms for any program P € L:
A. (PE ") = (P E ;) forany 0 < i < m;
B. (PEypj)=(PEy;)forany0<1i<j<ms.t N, =Nj.

We say that the process is converging iff the top-ranked program of
the last program set in the process satisfies the task spec:
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Jha et al. (2010). Oracle-Guided Component-Based
Program Synthesis. In ICSE.

3. PROBLEM DEFINITION IterativeSynthesis () :
The goal is to synthesize a loop-free program using a given 1 // Input: Set of base components used in
set of base components and using input-ouput examples. We // comstruction of Behaver and Distinctg,r
assume the presence of an I/O oracle that can be queried on  “ // Output: Candidate Program s
any input. The I/O oracle, when given an input, returns 4 £ = {(a0,Z(0))} // Pick any value ao for [
the output of the desired program (that we wish to syn- & Wwhile (1) {
thesize) on that input. We also assume th 6 L := T-SAT(Behaver(L));
7 if (L == 1) return "Components insufficient";
§  «:=T-SAT(Distinctp 1 (1));
9 if (a==1) {
10 P := Lval2Prog(L);
11 if (V(P)) return P;
12 else return "Components insufficient"; }
13 E:=FU{a,Z(x)}; }

Figure 3: Oracle-guided Synthesis Procedure



Blinn et al. (2022). An Integrative Human-Centered Architecture

for Interactive Programming Assistants. In VL/HCC.

let add : Int » (Int > Int) = = in
assert*((add 0 0) == 0)
assert2((add 0 1) == 1) 1
let add : Int » (Int »> Int) = =
assert2((add 0 0) == 0) Ax1.{:} [N
assert2((add 0 1) == 1) Aoy
2
let add : Int > (Int > Int) = BeRNAX1. {F) o » = x2 x1 add
assert2((add 0 0) == 0) x2 (Y
assert2((add 0 1) == 1) 11 92
let add : Int » (Int » Int) = Ax1.{Ax2.{x2}} in
assert’((add 0 0) == 0)
assert’'((add 0 1) == 1) 4

Over-specialized solution? Try some more assertions:

let add : Int > (Int > Int) = Ax1.{Ax2.{x2}} in
assert’((add 0 0) == 0)
assert’((add 0 1) == 1)
assert*((add 1 0) == 1)
assert*((add 2 2) == 4) 5

let add : Int »> (Int
assert~((add 0 0) =
assert*((add 0 1)
assert~((add 1 0)
assert2((add 2 2)

let add : Int »> (Int
assert~((add 0 0) ==
assert2((add 0 1)
assert~((add 1 0)
asserts((add 2 2)

let add : Int > (Int
assert~((add 0 0)
assert~((add 0 1)
assert2((add 1 0)
asserts((add 2 2)

5> Int) = Ax1.{1\x2.{m

0)
1)
1)
4)

> Int)
0)
1)
1)
4)

> Int)

1)
1)

case x1

| 0 =

| y1 =
let y1

case X2

| 0 =

| vi =
let y1

yl - 1 in

yl - 1 in

= 7\x1.{7\x2.{case x1
| 0 =

=x2 x1 add

= Ax1.{Ax2. {mcase il

| 0 = x2
| y1 =
let yl

=yl -1 in

= x2 x1 add
A

00
1 |
10
42

casing on x1 or x2 (3.6), and adding 1 before or after the recursive call (3.8). (3.9) shows the completed function

((add y1) (1 + x2))
(1 + )

Fig. 3. Hazel Live Assistant: Here we collaborate with the Smyth synthesizer to write a function to add Peano-representation integers. Here we are working
around the fact that the Smyth synthesizer supports only algebraic data types, which are not supported by Hazel; we translate the successor constructor to "+
1” and destructure a successor by subtracting 1. (3.1) portrays a stubbed-out function with two user-provided examples. (3.2-3.4) show the process of stepping
through a synthesis refinement tree: The user is offered a menu of options; at these stages there is only one suggested completion. The black panel displays
the unevaluated constraints which must be satisfied. (3.5) shows a finished but overspecialized solution; the user resolves this by stepping out of synthesis and
adding two more examples. (3.6-3.8) represent the result of deleting the ”x2” reference and resuming synthesis. This time the user has more options; either

A
A
A

let add :
Ax1.{
Ax2.{
case x1
| 0 = x2
| y1 =
let y1 = yl
((add y1) (1
end

Int > (Int

in

assert”((add 0 0)
assert”((add 0 1)
assert’((add 1 0)
assert”((add 2 2)

8

=yl x2 x1 add
10201 A

41 2 2N\

> Int) =

-1 1in
+ x2))

1)
1)
4)



Mayer et al. (2015). User Interaction Models for Disambiguation

in Programming by Example. In UIST.

To extract AuthorList from Record:
From the substring starting at the first occurrence of end of WhiteSpace,
extract the string ending at
<7the [ ~first occurrence of
~end of >Camel Case
in >the second line
Syl Program close

' +4 , -31the first occurrence of Dot after Camel Case

'+8,-21=the last occurrence of Dot after Camel Case in the secon
'+5, -24the first occurrence of Dot after DotoWhiteSpaceocCamel
'+1, -22the first occurrence of Dot after WhiteSpaceoCamel Case
| "+1, -227the first occurrence of Dot after AlphanumericoWhiteSpay

Figure 6: Program Viewer tab & alternative subexpressions.

Output

Program viewer Disambiguation

‘Author’ is currently ambiguous. Which highlighting is correct?

and and
D. €. Wang |or] D. C. Wang

Let me edit it myself

Figure 7: Conversational Clarification being used to disam-
biguate different programs that extract individual authors.
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Programming by Navigation can be thought of as a“semantic” structure editor.

e Programming by Navigation synthesizers satisfy the following theorem:

o Constructability. If e valid, then there exists an S-interaction

01 ON
g —> ++-—¢€

e Analogous to Omar et al. (2017)’s constructability theorem for the

Hazelnut structure editor calculus.

e Structure editors prevent steps that are syntactically invalid.

* * e Programming by Navigation prevents steps that are semantically

invalid (i.e., won’t lead to a valid solution).



Steps are the building blocks for STRONG COMPLETENESS and STRONG SOUNDNESS.

o Validity: e valid
o Steps: e; R e, (with induced relation e; < ey)
e Requirements for steps:

. . . , o
e Determinism. There is at most one ¢’ for each e and o such that e — ¢'.

e No loops. < is a strict partial order.

e Reachability. There exists a lower bound es.+ on the set of valid

expressions (a “blank program”).

Finite Between. Every infinite ascending chain ¢ < ¢; < -+ is unbounded.



Programming by Navigation Synthesizers have some nice properties for free!

e Fail Fast.

If there are no valid expressions, then S(esiart) = @.

e Progress (analogous to traditional progress theorem for A-calculus).

01 ON .
If there is at least one valid expression, and eo — -+ — eN is an S-interaction, then either e valid or S(esiart) # .

e (Constructability (analogous to Omar et al. 2017’s constructability theorem for the Hazelnut structure editor calculus).

. . . . 01 ON
If e valid, then there exists an S-interaction ey — -+ — e.

e Structure editors prevent steps that are syntactically invalid.

e Programming by Navigation prevents steps that are semantically invalid (i.e., won't lead to a valid solution).




Syntax and semantics for top-down steps.

Expressions e ::= f(e,...,enN) Steps 0 =7, ~ f(e,...,en)

e, — ey | o top-down steps e; to e,

STEP/EXTEND STEC:)_I;/ SEQ o
arity(f) =N ?,<e e — ¢ e/ — e
2w f(eq,....eN) 01:02 4y

e > [?n > f(er,...,en)]e € > €



An example Programing by Navigation interaction for top-down steps.

m Synthesizer (step provider) needs to do this.
Goal type: D(1,2) All and only valid next steps

Working sketch: 7, . o 7, d"(2,)
Goal: 7, : D {

Working sketch: d'(?2,) o 2, ¥ (2,,2)
Goal: 2, : M # 2, - bh>T(7)
oal. 5. * 2 "3 User chooses

among these.

Goal: 7, : M

Working sketch: d'*(b1*1(2,)) » { 2 (2, 2)



Cannot simply look at grammar induced by the simple types.

Goal: 7, : D

Incorrect!

Working sketch: d L2 ?5)
Goal: 7, : M

Working sketch: d'*(b1>1(2,))
Goal: 7, : M

| { 12402, 9,)
® bl,2,T(?3)

» {. cb2H(2:,2)



The paper irons out a some wrinkles...

Programming by Navigation

JUSTIN LUBIN, University of California, Berkeley, USA
PARKER ZIEGLER, University of California, Berkeley, USA
SARAH E. CHASINS, University of California, Berkeley, USA

When a program synthesis task starts from an ambiguous specification, the synthesis process often involves an
iterative specification refinement process. We introduce the Programming by Navigation Synthesis Problem, a
new synthesis problem adapted specifically for supporting iterative specification refinement in order to find a
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