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We present an enumerative program synthesis framework called component-based refactoring that can refactor
“direct” code that does not use library components into equivalent “combinator” style code that does use
library components. This framework introduces a sound but incomplete technique to check the equivalence
of direct code and combinator code called equivalence by canonicalization that does not rely on input-output
examples or logical specifications. Moreover, our approach can repurpose existing compiler optimizations,
leveraging decades of research from the programming languages community.We instantiated our new synthesis
framework in two contexts: (i) higher-order functional combinators such as map and filter in the statically-
typed functional programming language Elm and (ii) high-performance numerical computing combinators
provided by the NumPy library for Python. We implemented both instantiations in a tool called Cobbler
and evaluated it on thousands of real programs to test the performance of the component-based refactoring
framework in terms of execution time and output quality. Our work offers evidence that synthesis-backed
refactoring can apply across a range of domains without specification beyond the input program.
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1 INTRODUCTION

Functional programming languages often provide programmers with higher-order reusable compo-
nents to achieve functionality like mapping a function over a list. For example, a programmer can
write in a combinator style by stringing together these components using the “pipeline” operator
(|>) common in languages like Elm, OCaml, and F#, here expressed in Elm:

main : (String → Bool) → (String → List Int) → List String → List Int

main p f list =

list |> List.filter p |> List.map f |> List.concat

An equivalent direct style of this Elm program could be written as follows:

main : (String → Bool) → (String → List Int) → List String → List Int

main p f list =

case list of

[] → []

head :: tail → if p head then f head ++ main p f tail else main p f tail

∗These authors contributed equally (order determined alphabetically).

Authors’ addresses: Justin Lubin, justinlubin@berkeley.edu, University of California, Berkeley, Berkeley, California, USA;
Jeremy Ferguson, jmfergie@berkeley.edu, University of California, Berkeley, Berkeley, California, USA; Kevin Ye, yekeviny@
berkeley.edu, University of California, Berkeley, Berkeley, California, USA; Jacob Yim, jacobyim@berkeley.edu, University
of California, Berkeley, Berkeley, California, USA; Sarah E. Chasins, schasins@cs.berkeley.edu, University of California,
Berkeley, Berkeley, California, USA.

HTTPS://ORCID.ORG/0000-0003-2311-1873
HTTPS://ORCID.ORG/0000-0001-7778-5043
HTTPS://ORCID.ORG/0000-0003-3618-0966
HTTPS://ORCID.ORG/0000-0002-6174-2644
HTTPS://ORCID.ORG/0000-0003-0557-3580
https://orcid.org/0000-0003-2311-1873
https://orcid.org/0000-0001-7778-5043
https://orcid.org/0000-0003-3618-0966
https://orcid.org/0000-0002-6174-2644
https://orcid.org/0000-0003-0557-3580


2 Justin Lubin, Jeremy Ferguson, Kevin Ye, Jacob Yim, and Sarah E. Chasins

Lubin and Chasins [70] found that even when programmers may sometimes prefer the former
(combinator) style of code, it can be more difficult to write from scratch than the latter (direct) style.
The work includes quotes from programmers like:

I really prefer the pipeline for readability, but it’s a little bit harder to write because I don’t feel
like I have the streamlined version of how it’s going to look, whereas if I write the case down, it’s
telling me, here’s all the possibilities, just handle them—like, start with this and go to the next one.

In this paper, we present a component-based program synthesis framework called component-

based refactoring to synthesize combinator-style equivalents of direct-style programs—that is, to
synthesize compositions of library components that are semantically equivalent to a programmer’s
reference program—without any further specification. We instantiate our technique in two domains:
(i) refactoring Elm programs (as above) and (ii) refactoring Python programs that use explicit for
loops into programs that use NumPy’s numeric computing combinators.

Our technique soundly refactors programs using only the direct-style reference program. Previous
component-based synthesis approaches typically rely on one of two additional specifications:

(1) Input-output examples. 𝜆2 [40], Big𝜆 [102] and SyPet [39] use input-output examples as
the specification for component-based synthesis (although they do not target refactoring
tasks). To use one of these approaches to perform refactoring, we would need to (i) generate
an appropriate set of inputs to form a specification, (ii) run the reference program on
the selected inputs to produce input-output examples, and (iii) run candidate synthesis
solutions on this set of input-output examples to check for behavior match. However, for
(i), generating a complete set of inputs is not possible for all programs, making this approach
unsound, and for (ii) and (iii), it is not always possible to run the programs if they are, for
example, snippets of larger programs, rely on external resources, take a long time to execute,
or do not terminate.

(2) Logical specifications. Oracle-guided inductive synthesis [55] and verified lifting [18, 26] can
perform component-based synthesis for refactoring by relying on SMT solvers. Unlike an
example-based refactoring approach, these approaches are sound and do not require running
the programs; however, they require complete logical specifications for the components
and reference programs. To apply this technique in our setting, we would need to be able to
infer logical specifications for the input reference programs. This approach works well for
difficult-to-write system kernels, but requiring complete logical specifications in domains
where specifications are difficult to express in SMT theories can be a heavy burden.

To apply these lines of work, one might ask: How can we automatically generate an appropriate
set of input-output examples or infer logical specifications for the program snippets we want to
refactor? Instead, we ask a different question: Given that we already have a direct-style program,
how can we bypass the need for input-output examples or logical specifications entirely?

Key insight. Although off-the-shelf optimization techniques do not convert our input direct-style
programs into our output combinator-style programs, they can go the other way around and convert
combinator-style programs into direct-style programs. For example, we can obtain the direct-style
Elm program above from the preceding combinator-style program via the classic off-the-shelf
optimization technique of catamorphism fusion from the algebra of programming [20, 76], which
is a generalization of deforestation [115]. In fact, direct-style programs often look like programs
on which various compiler optimizations—inlining, constant folding, deforestation—have already
been performed. Thus, for the particular problem of component-based refactoring—where we aim
to identify whether a composition of components is equivalent to an inlined, constant-folded,
and deforested program—the techniques we need for checking equivalence are exactly the same
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terminating, syntactic transformations that our community has been inventing for decades to use
as compiler optimizations.
More broadly, if we have a terminating syntactic transformation 𝜙 that satisfies the property

that any two input programs mapped to the same output program are semantically equivalent,
then we can soundly check whether two programs 𝑃1 and 𝑃2 are semantically equivalent by
checking if𝜙 (𝑃1) and𝜙 (𝑃2) are syntactically equivalent; we call such a function𝜙 a canonicalization
function. While this check—which we call equivalence by canonicalization—is not (and cannot
be) complete for a Turing-complete language, if a canonicalization function maps many input
programs that a programmer might write to the same output program while satisfying this property,
then equivalence by canonicalization will be useful in practice despite its incompleteness. Our
synthesis algorithm leverages this technique by enumerating compositions of library components
until equivalence by canonicalization soundly deduces that a candidate solution is semantically
equivalent to the reference program.

Contributions. This paper contributes:
(1) An automated technique to check the semantic equivalence of programs called equivalence

by canonicalization (§4) that requires no further specification beyond the programs’ source
code.We also contribute a synthesis framework built around equivalence by canonicalization
called component-based refactoring (§5). We prove both equivalence by canonicalization and
component-based refactoring sound and provide guidance on how to use them in practice.

(2) Two instantiations of the component-based refactoring framework (§6): one for higher-order
functional combinators, and one for high-performance numerical computing combinators.

(3) An implementation of these instantiations called Cobbler, evaluated on thousands of real
programs from The Stack [60] to test the performance of the component-based refactoring
framework, both in terms of execution time and quality of outputs (§8).

2 OVERVIEW

To illustrate the core insight of our approach, we consider a non-recursive example. Consider the
following component library:

map : (a → a) → Maybe a → Maybe a

map f mx = case mx of Nothing → Nothing | Just x → Just (f x)

withDefault : a → Maybe a → a

withDefault d mx = case mx of Nothing → d | Just y → y

Suppose we wish to use this component library to refactor the following function:

Inputmain : (Int → Int) → Maybe Int → Int

main f mx = case mx of Nothing → 0 | Just x → f (f x)

Our algorithm uses top-down enumerative synthesis to generate, among other candidates, the
following sketch, which we will call 𝑆 :

withDefault ?1 (map ?2 ?3 )

The key question is then: How can we check whether this candidate sketch 𝑆 can be used to refactor
the input function, main? As a first step, we might consider inlining the library components into
the candidate expression, which yields:

case (case ?3 of Nothing → Nothing | Just x → Just ( ?2 x)) of

Nothing → ?1
Just y → y
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Fig. 1. A visual overview of our component-based refactoring algorithm.Given a library of components

to refactor an input program with, the algorithm enumerates candidate library programs with holes (sketches).

The algorithm applies a fixed syntactic transformation (called a canonicalization function) to both the provided

input program and the enumerated candidate sketches until it finds a sketch whose canonicalized form

unifies with the canonicalized input program. The algorithm concludes by using the result of this unification

to fill the holes in the matching candidate sketch.

At this point, the candidate sketch is still quite distinct from the main function syntactically; even
unification modulo the equational theory of the 𝜆-calculus (higher-order unification) fails. However,
drawing from the literature on optimizing compilers, we can apply a semantics-preserving program
transformation known as deforestation [115], yielding:

case ?3 of Nothing → (case Nothing of Nothing → ?1 | Just y → y)

Just x → (case Just ( ?2 x) of Nothing → ?1 | Just y → y)

The original motivation for deforestation was to remove intermediate allocations in the combinator-
style code that functional programmers often want to write. It turns out that what makes this
transformation so useful for optimizing functional code is exactly what makes it useful for this
synthesis problem as well: It applies to code that functional programmers often want to write!

If we now partially evaluate any case expression whose scrutinee is a constructor literal on the
deforested example, we arrive at the following sketch:

case ?3 of Nothing → ?1 | Just x → ?2 x

Higher-order unification of this sketch with the original main function now yields the substitution
{ ?1 ↦→ 0, ?2 ↦→ 𝜆z. f (f z), ?3 ↦→ mx}, which, when applied to the enumerated sketch 𝑆 , yields:

OutputwithDefault 0 (map (𝜆z. f (f z)) mx)

Figure 1 illustrates how we use this idea for our synthesis framework: We enumerate many
candidate programs and apply a fixed syntactic transformation to each one until one unifies
with the transformed input program. In the example above, the transformation is deforestation
and unification is higher-order unification. While this technique is necessarily incomplete, our
evaluation in Section 8 shows that this approach can be made to work well in practice.

Key insight: Naïve inlining (even modulo the equational theory of the 𝜆-calculus) is not
sufficient to unify a candidate sketch and the reference program; success requires an additional
syntactic transformation (in this case, deforestation).

In Section 4, we define precisely what properties this syntactic transformation must satisfy;
intuitively, it cannot map semantically distinct programs to the same program. In Section 6, we
describe two particular such transformations, one that works for refactoring with higher-order
functional combinators in the Elm programming language (as in the non-recursive example from
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this section and the recursive example from Section 1), and one that works for refactoring with
numerical computing combinators in the NumPy library [50] for the Python programming language.

3 PROBLEM STATEMENT

We now formalize our problem statement via a series of definitions.

Definition 3.1. The sketch closure of a set 𝑋 equipped with a notion of composition (such as
function application) is notated cl?𝑋 and is the closure of 𝑋 under composition among elements in
the set and the infinite set of named holes {?𝑖 : 𝑖 ∈ N}, where we call 𝑖 the name of the hole ?𝑖 .
We call the elements of cl?𝑋 sketches, even if they do not contain a hole.

Definition 3.2. For our purposes, a language L has
(1) an inductively defined set of programs ProgL (whose equality is syntactic and decidable);
(2) a set of values ValL (whose equality may be undecidable); and
(3) a semantics J·KL : ProgL → ValL (that may not be computable).

We further suppose the existence of a finite library LibL ⊆ ProgL of components, whose (infinite)
sketch closure cl? LibL consists of what will call component sketches. When clear from context
or irrelevant, we omit the subscript L on these terms.

Definition 3.3. A hole substitution for a language L is a finite mapping from hole names in N
to closed terms of ProgL . We notate the set of all hole substitutions for L by ΣL (again occasionally
omitting the subscript). The application of a hole substitution 𝜎 ∈ ΣL to a sketch 𝑆 ∈ cl? ProgL
is notated 𝜎𝑆 and is defined by replacing holes ?𝑖 in the domain of 𝜎 present in 𝑆 with 𝜎 (𝑖).

With these definitions, our goal is as follows:

Definition 3.4 (Problem statement). Given a program 𝑃 ∈ Prog, find a component sketch
𝑆 ∈ cl? Lib and hole substitution 𝜎 ∈ Σ such that J𝜎𝑆K = J𝑃K without any further specification.

Remark 3.5. Sketches separate the parts of the solution that use library components from those
that use fragments of the input program or other non-library expressions, which enables a variety
of cost metrics, such as maximizing or minimizing the number of components in 𝑆 , minimizing the
number of holes in 𝑆 , or something else entirely. Indeed, there is always at least one solution (𝑆 = ?0
with 𝜎 = [0 ↦→ 𝑃]) and possibly infinitely many (if the identity function id is in Lib, then the 𝑛-fold
composition of identity functions 𝑆 = id

𝑛 (?0) with 𝜎 = [0 ↦→ 𝑃] is a solution for all 𝑛 ∈ N). Thus,
in practice, an algorithm must balance between “too few” and “too many” components.

4 EQUIVALENCE BY CANONICALIZATION

Our problem statement requires establishing the semantic equivalence of a reference program 𝑃

and a candidate filled component sketch 𝜎𝑆 in that it requires J𝜎𝑆K = J𝑃K. However, checking the
equivalence of J𝜎𝑆K and J𝑃K may be undecidable, as, in general, (i) equality of values is undecidable
and (ii) the semantics J·K is uncomputable. Thus, the best we can hope for is an algorithm that can,
in many practical cases, tell us whether a candidate filled component sketch 𝜎𝑆 is semantically
equivalent to the reference program 𝑃 , but in some cases simply return ⊥ to indicate uncertainty.
Before we define such an algorithm, we first establish a few standard preliminary definitions:

Definition 4.1 (Preliminaries). The quotient of a set 𝑋 by an equivalence relation 𝑅 is the set
of equivalence classes 𝑋/𝑅 = {[𝑥]𝑅 : 𝑥 ∈ 𝑋 }. An equivalence relation 𝑅 is a refinement of an
equivalence relation 𝑅′ (written 𝑅 ≤ 𝑅′) if (𝑥1, 𝑥2) ∈ 𝑅 implies (𝑥1, 𝑥2) ∈ 𝑅′. The kernel of 𝑓 is the
equivalence relation Ker 𝑓 = {(𝑥1, 𝑥2) ∈ 𝑋 × 𝑋 : 𝑓 (𝑥1) = 𝑓 (𝑥2)}.
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Algorithm 1 Basic equivalence by canonicalization
Parameter: Basic canonicalization function 𝜙 for L
Input: Two programs 𝑃1, 𝑃2 ∈ ProgL
Output: Either ⊤ or ⊥
1: if 𝜙 (𝑒1) = 𝜙 (𝑒2) then return ⊤ else return ⊥

Fig. 2. Basic equivalence by canonicalization is an algorithmic version of Noether’s first isomor-

phism theorem. Prog/Ker𝜙 is the set of equivalence classes of programs with the same canonicalized form.

With these definitions, we can say that our problem definition requires establishing that 𝑃 and
𝜎𝑆 are in the same equivalence class of the quotient Prog/Ker J·K. These definitions also enable us
to leverage the ideas behind Noether’s first isomorphism theorem for sets (illustrated in Figure 2):

Theorem 4.2 (Noether’s first isomorphism theorem for sets). If 𝑋 and 𝑌 are sets and

𝜙 : 𝑋 → 𝑌 , then the image of 𝜙 is isomorphic to 𝑋/Ker𝜙 via the bijection [𝑥]Ker𝜙 ↦→ 𝜙 (𝑥).

Key insight. The key insight is then to choose 𝜙 such that Ker𝜙 is a refinement of Ker J·K. Noether’s
first isomorphism theorem then enables us to soundly check the semantic equivalence of 𝑃1 and 𝑃1
by checking the syntactic equivalence of 𝜙 (𝑃1) and 𝜙 (𝑃2). This motivates the following definition:

Definition 4.3. A function 𝜙 : ProgL → ProgL is a basic canonicalization function for L if
(i) it is computable and (ii) Ker𝜙 ≤ Ker J·K.

Example 4.4. Let L be the language of integer arithmetic. Then 𝜙1, 𝜙2, and 𝜙3 below are basic
canonicalization functions forL (even though 𝜙1 and 𝜙3 are not semantics-preserving) because they
are computable and 𝜙𝑖 (𝑃1) = 𝜙𝑖 (𝑃2) (syntactic equality) implies J𝑃1K = J𝑃2K (semantic equality):

𝜙1 (𝑃) = J2 · 𝑃K; 𝜙2 (𝑃) = 𝑃 with all instances of 𝑥 · 1 rewritten to 𝑥 ; 𝜙3 (𝑃) = 0 · 𝑃 .
However, the functions 𝑓1 (𝑃) = J0 · 𝑃K and 𝑓2 (𝑃) = J𝑃 · 𝑃K are not basic canonicalization functions
for L because 𝑓𝑖 (−1) = 𝑓𝑖 (1) yet J−1K ≠ J1K.

We can now define Algorithm 1—an algorithmic version of Noether’s first isomorphism theorem—
to check whether two programs are semantically equivalent, then prove its soundness:

Theorem 4.5. Algorithm 1 always terminates, and if it returns ⊤ on (𝜙, 𝑃1, 𝑃2), then J𝑃1K = J𝑃2K.

For concision, we provide all proofs in an appendix in the supplementary materials.

Key takeaway: We can check semantic equivalence of programs using a combination of
(i) syntactic equivalence and (ii) particular kinds of computable syntactic transformations.

Algorithm 1 captures the insight of our approach, but the following example shows that it suffers
from two key limitations, which we overcome in the next section: (i) it cannot handle sketches, and
(ii) syntactic equality can be too restrictive.

Example 4.6. Suppose 𝜙 is a basic canonicalization function for the simply-typed 𝜆-calculus and
𝑀 and 𝑁 are terms with 𝜙 (𝑀) = ?1 𝑥 and 𝜙 (𝑁 ) = 𝑓 (𝑓 𝑥) (roughly as in Section 2). Conceptually, 𝜙
establishes the semantic equivalence of𝑀 and 𝑁 even though 𝜙 (𝑀) has a hole and 𝜙 (𝑀) ≠ 𝜙 (𝑁 )
because if ?1 is set to 𝜆𝑧. 𝑓 (𝑓 𝑧), then the two terms are equal modulo the equational theory of the
𝜆-calculus. We need (i) to allow holes to be filled and (ii) more flexibility than syntactic equality.
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Algorithm 2 Equivalence by canonicalization: EbC(𝜙,𝑢, 𝑆1, 𝑆2)
Parameter: Canonicalization function 𝜙 for hole-free language L with respect to𝑈
Parameter: Inference algorithm 𝑢 for𝑈
Input: Two sketches 𝑆1, 𝑆2 ∈ cl? ProgL
Output: Either a hole substitution 𝜎 or ⊥
1: if 𝑢 (𝜙 (𝑆1), 𝜙 (𝑆2)) = 𝜎 then return 𝜎 else return ⊥

4.1 Explicitly Handling Holes

To handle cases like those in Example 4.6, we first introduce holes to our language as follows.

Definition 4.7. A hole-free language L is one with ProgL ∩ {?𝑖 : 𝑖 ∈ N} = ∅ and ValL ∩ {?𝑖 :
𝑖 ∈ N} = ∅. The sketch language of a hole-free language L is notated L? and defined by setting

(1) ProgL? = cl? ProgL ;
(2) ValL? = all mappings from ΣL to ValL ;

(3) J𝑆KL? = 𝜎 ↦→ J𝜎𝑆KL ; and
(4) LibL? = LibL .

We now define the most relaxed possible generalization of syntactic equality in this new language.
Although it is undecidable because it relies on computing semantics and value equality, we will use
it to define a correctness criterion for a broader notion of canonicalization functions momentarily.

Definition 4.8. Let L be a hole-free language. The semantic unification relation ≡L⊆ ValL? ×
ValL? × ΣL for L holds on 𝑉 1,𝑉 2, 𝜎 (written 𝑉 1 ≡𝜎

L 𝑉 2) if 𝑉 1 (𝜎) = 𝑉 2 (𝜎). A hole substitution
𝜎 ∈ ΣL semantically unifies sketches 𝑆1, 𝑆2 ∈ ProgL? if J𝜎𝑆1KL = J𝜎𝑆2KL (i.e., J𝑆1KL? ≡𝜎

L J𝑆2KL? ).
A relation 𝑈 ⊆ ProgL? × ProgL? × ΣL is a partial semantic unification relation for L if for all
𝑆1, 𝑆2 ∈ ProgL? and 𝜎 ∈ ΣL such that𝑈 (𝑆1, 𝑆2, 𝜎), 𝜎 semantically unifies 𝑆1 and 𝑆2.

To take advantage of this definition, we must first define a suitable generalization of kernels:

Definition 4.9. Let 𝑋,𝑌, and 𝑍 be sets. The generalized kernel of a function 𝑓 : 𝑋 → 𝑌 with
respect to a relation 𝑅 ⊆ 𝑌 × 𝑌 × 𝑍 is Ker𝑅 𝑓 = {(𝑥1, 𝑥2, 𝑧) ∈ 𝑋 × 𝑋 × 𝑍 : 𝑅(𝑓 (𝑥1), 𝑓 (𝑥2), 𝑧)}.

Remark 4.10. This definition generalizes the notion of a function kernel in the following sense.
Let 𝑋 and 𝑌 be sets with 𝑓 : 𝑋 → 𝑌 . Take 𝑍 = {⊤} and 𝑅(𝑦1, 𝑦2,⊤) to hold if and only if 𝑦1 = 𝑦2.
Then Ker𝑅 𝑓 ≃ Ker 𝑓 via the bijection (𝑦1, 𝑦2,⊤) ↦→ (𝑦1, 𝑦2). Alternatively, if we define 𝑅′ (𝑦1, 𝑦2)
to hold if ∃𝑧 ∈ 𝑍 . 𝑅(𝑦1, 𝑦2, 𝑧) and 𝑅′ is an equivalence relation, then we can define 𝑓 ′ : 𝑋 → 𝑌/𝑅′
by 𝑓 ′ (𝑥) = [𝑓 (𝑥)]𝑅′ and view Ker𝑅 𝑓 as a version of Ker 𝑓 ′ that “keeps track” of the witness 𝑧 ∈ 𝑍
that causes 𝑅(𝑓 (𝑥1), 𝑓 (𝑥2), 𝑧) to hold for 𝑥1, 𝑥2 ∈ 𝑋 .

We can now define the full form of a canonicalization function.

Definition 4.11. A function 𝜙 : ProgL? → ProgL? is a canonicalization function for a hole-
free language L with respect to a relation 𝑈 ⊆ ProgL? × ProgL? × ΣL if (i) it is computable and
(ii) Ker𝑈 𝜙 ≤ Ker≡L J·KL? .

Remark 4.12. A basic canonicalization function is a canonicalization function with respect to the
relation that discards its third argument and checks syntactic equality of its first two arguments.

The following lemma is one convenient way to make a canonicalization function (however, as
in Example 4.4, canonicalization functions need not be semantics-preserving). We provide other
sufficient conditions for canonicalization functions in an appendix in the supplementary materials.

Lemma 4.13. Let 𝑈 be a partial semantic unification relation for L and 𝜙 : ProgL? → ProgL? be

computable and semantics-preserving. Then 𝜙 is a canonicalization function for L with respect to𝑈 .
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Fig. 3. The canonicalization function 𝜙1 is better than the canonicalization function 𝜙2 (𝜙1 ≻ 𝜙2) because the
equivalence classes of the kernel of 𝜙1 are coarser than those of 𝜙2.

Finally, before generalizing Algorithm 1, we introduce one more definition.

Definition 4.14. Let𝑋,𝑌, and𝑍 be sets. A semi-inference algorithm for a relation 𝑅 ⊆ 𝑋 ×𝑌 ×𝑍
is a computable function 𝑟 : 𝑋 × 𝑌 → 𝑍 ∪ {⊥} with the property that if 𝑟 (𝑥,𝑦) = 𝑧 ∈ 𝑍 , then
𝑅(𝑥,𝑦, 𝑧); 𝑟 is an inference algorithm if 𝑟 (𝑥,𝑦) = ⊥ implies there is no 𝑧 ∈ 𝑍 such that 𝑅(𝑥,𝑦, 𝑧).

We now introduce the full equivalence by canonicalization algorithm in Algorithm 2. The crucial
subtlety of this algorithm is that we can soundly apply the substitution 𝜎 generated by 𝑢 on the

outputs of 𝜙 to the inputs of 𝜙 ; this is precisely why we need to “keep track” of hole substitutions
as described in Remark 4.10. The following soundness theorem captures exactly this property.

Theorem 4.15 (Termination and soundness of eqivalence by canonicalization). Let 𝜙
be a canonicalization function for a hole-free language L with respect to 𝑈 and 𝑢 be an inference

algorithm for𝑈 . Then EbC(𝜙,𝑢, ·, ·) is a semi-inference algorithm for Ker≡L J·KL? .

Key takeaway: To support sketches and equality modulo theories, we can loosen the restriction
of syntactic equivalence when performing equivalence by canonicalization.

4.2 How Should We Choose a Canonicalization Function?

Algorithm 2 is parameterized by a canonicalization function 𝜙 , but not all choices of 𝜙 are equally
useful. Intuitively, we want to choose a function 𝜙 that maps many input programs to the same

output program while still satisfying the canonicalization function requirements. We can formalize
this idea by again turning to the notion of a refinement. Refinements give a necessary condition for
basic canonicalization functions (Ker𝜙 must be a refinement of Ker J·K), but they also tell us “how
good” a choice of 𝜙 is: we can say that 𝜙1 is better choice than 𝜙2 if Ker𝜙2 is a strict refinement of
Ker𝜙1—that is, if 𝜙1 maps more expressions to the same result than does 𝜙2. To extend this idea to
full canonicalization functions, we first introduce the following auxiliary definition.

Definition 4.16. Let 𝑋 and 𝑍 be sets. For a relation 𝐾 ⊆ 𝑋 × 𝑋 × 𝑍 , the forgotten version of 𝐾
is F (𝐾) = {(𝑥1, 𝑥2) ∈ 𝑋 × 𝑋 : ∃𝑧 ∈ 𝑍 . 𝐾 (𝑥1, 𝑥2, 𝑧)}.

Whereas before we wanted to keep track of hole substitutions, now we explicitly do not want to
do so when assessing if one canonicalization function is better than another; so long as the hole
substitutions are valid, we do not care whether the use of one canonicalization function returns the
same hole substitutions as the use of another, but rather whether the use of one canonicalization
function succeeds more often than the use of another. The following definition leverages the
preceding auxiliary definition to formalize this idea, which we visually depict in Figure 3.

Definition 4.17 (Goodness of canonicalization functions). A canonicalization function 𝜙1 with
respect to𝑈 1 is no worse than a canonicalization function 𝜙2 with respect to𝑈 2 (written 𝜙1 ⪰ 𝜙2)
if F (Ker𝑈 1 𝜙1) ≥ F (Ker𝑈 2 𝜙2). If F (Ker𝑈 1 𝜙1) > F (Ker𝑈 2 𝜙2), then 𝜙1 is better than 𝜙2 (𝜙1 ≻ 𝜙2).
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Example 4.18. Let L be the language of integer arithmetic. Then 𝜙1, 𝜙2, and 𝜙3 from Example 4.4
(extended to L?) are canonicalization functions for L with respect to the syntactic unification
relation ≈ and 𝜙1 > 𝜙2 > 𝜙3. For example, (2+ 1, 3) ∈ F (Ker≈ 𝜙1) \ F (Ker≈ 𝜙2) because 𝜙1 (2+ 1) =
6 = 𝜙1 (3) yet 𝜙2 (2+ 1) = 2+ 1 0 3 = 𝜙2 (3); moreover, (2 · 1, 2) ∈ F (Ker𝑈 𝜙2) \ F (Ker𝑈 𝜙3) because
𝜙2 (2 · 1) = 2 = 𝜙2 (2) yet 𝜙3 (2 · 1) = 0 · (2 · 1) 0 0 · 2 = 𝜙3 (2).

Theorem 4.19 (Better canonicalization implies better eqivalence checking). Let 𝜙1 and
𝜙2 be canonicalization functions for a hole-free language L with respect to 𝑈 1 and 𝑈 2 and let 𝑢1 and

𝑢2 be inference algorithms for𝑈 1 and𝑈 2. Suppose 𝜙1 ⪰ 𝜙2. Then:
(1) If EbC(𝜙2, 𝑢2, 𝑆1, 𝑆2) = 𝜎2 for some hole substitution 𝜎2 ∈ Σ, then EbC(𝜙1, 𝑢1, 𝑆1, 𝑆2) = 𝜎1 for

some hole substitution 𝜎1 ∈ Σ.
(2) If𝜙1 ≻ 𝜙2, there exist 𝑆1, 𝑆2 ∈ cl? Progwith EbC(𝜙2, 𝑢2, 𝑆1, 𝑆2) = ⊥ yet EbC(𝜙1, 𝑢1, 𝑆1, 𝑆2) = 𝜎1

for some hole substitution 𝜎1 ∈ Σ.

Remark 4.20. Theorem 4.19 provides a theoretical grounding for what makes a good canonical-
ization function. In practice, the goal is to choose 𝜙 to map component sketches and programs that

the user is likely write to the same output program; accordingly, equivalence by canonicalization
benefits greatly from accurate program characterization of the target programming domain.

Key takeaway: We should choose canonicalization functions that map many input programs
to the same output program.

5 SYNTHESIS FRAMEWORK

We now describe our top-level synthesis framework. At a high level, the framework is an enumera-
tive synthesizer whose search space is candidate sketches and whose satisfaction criterion is given
by equivalence by canonicalization (Algorithm 2).

Definition 5.1. An enumerator for a set 𝑋 is an algorithm Enum(·) that, given a reference
program in 𝑋 , lazily generates a (possibly infinite) sequence of elements of 𝑋 .

Remark 5.2. There are many kinds of enumerators in the synthesis literature [10, 67, 78, 88]; the
choice of enumerator is orthogonal to the techniques and soundness results we present here.

Using this definition of an enumerator and our earlier definition of equivalence by canonicaliza-
tion in Algorithm 2, we now introduce our component-based refactoring algorithm in Algorithm 3,
which we illustrated earlier in Figure 1. The following theorem establishes its soundness, proving
that, upon termination, it solves the problem posed in Definition 3.4.

Theorem 5.3 (Soundness of component-based refactoring). Let 𝜙 be a canonicalization

function for a hole-free language L with respect to 𝑈 , 𝑢 be an inference algorithm for 𝑈 , Enum be an

enumerator LibL , and 𝑃 be a program in ProgL . If Algorithm 3 terminates, it returns a component

sketch 𝑆 ∈ cl? LibL and hole substitution 𝜎 such that J𝜎𝑆KL = J𝑃KL .

Remark 5.4 (Completeness and termination). The completeness of Algorithm 3 is dependent on
the choices of LibL , the canonicalization function 𝜙 , the relation𝑈 , and the enumerator Enum. For
sufficiently complex languages and libraries, it is impossible to achieve completeness (which would
amount to solving the halting problem), but in general two changes bring the algorithm “closer” to
completeness: (i) increasing the coverage of Enum and (ii) choosing 𝜙 high in the better-than partial
order (Definition 4.17). Of course, (i) introduces a tension between completeness and termination:
If the enumerator provides an infinite sequence of programs, then Algorithm 3 may not terminate.
Otherwise, however, it will terminate, as equivalence by canonicalization always terminates.
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Algorithm 3 Component-based refactoring
Parameter: Canonicalization function 𝜙 for hole-free language L with respect to𝑈
Parameter: Inference algorithm 𝑢 for𝑈
Parameter: Enumerator Enum for LibL
Input: A program 𝑃 ∈ ProgL
Output: A component sketch 𝑆 ∈ cl? LibL and hole substitution 𝜎
1: for 𝑆 ∈ Enum(𝑃) do
2: if EbC(𝜙,𝑢, 𝑃, 𝑆) = 𝜎 then return (𝑆, 𝜎)

Key takeaway: To solve the component-based refactoring problem posed in Definition 3.4, we
can slot the equivalence by canonicalization algorithm into an enumerative synthesizer by using
it as a notion of satisfaction.

Remark 5.5 (Optimizations). An easy optimization is to inline the equivalence by canonicalization
procedure and only compute 𝜙 (𝑃) once. A more exciting possibility is to leverage term indexing

to separate the algorithm into an “offline” and “online” stage. Briefly, the offline stage would run
the enumerator up to a fixed bound and store each canonicalized sketch as a key and the original
sketch as a value; then, the online stage would canonicalize a given input program and look it up in
the term index. Term indexes for languages beyond first-order logic are a long-running and active
area of research [31, 43, 44, 57, 68, 93, 110]; consequently, we defer this extension to future work.

6 FRAMEWORK INSTANTIATIONS

To demonstrate the applicability of the component-based refactoring (CBR) synthesis framework
to different domains, we instantiated it in two different contexts:
(§6.1) CBR-Elm: Refactoring code in the statically-typed functional programming language

Elm that uses pattern matches and explicit recursion into code that uses higher-order
combinators like List.map and List.filter.

(§6.2) CBR-Python: Refactoring code in Python that uses for loops into code that uses numerical
computing functions provided by the NumPy library like np.sum and np.convolve.

In this section, we discuss the high-level choices we made to instantiate the synthesis framework
we described in Section 5; we defer low-level implementation details to Section 7. We present
these instantiations via detailed worked examples, as the exact formal definitions of the syntactic
transformations we rely on (such as catamorphism fusion) are not a contribution of our work.

As we discussed in Remark 3.5, algorithms solving the problem statement in Definition 3.4 must
balance between choosing “too few” and “too many” library components; we opt to return the
smallest solution with at least one component (ruling out the trivial solution of always returning a
hole) by performing top-down enumeration starting from single components of the library rather
than starting from a top-level hole. As we will see in the user study in Section 8.3 and performance
evaluation in Section 8.4, this heuristic was sufficient to result in desirable programs.

6.1 Higher-Order Functional Combinators in Elm

For CBR-Elm, we synthesize programs using 17 functions mostly from the Elm standard library
(listed in an appendix in the supplementary materials) relating to the Bool, Maybe, Result, and List

types (we include find and findMap functions for List, which happen to be absent in the standard
library). We note, however, that our approach extends to arbitrary user-provided libraries with no
additional work beyond writing the functions in standard Elm code.
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To make CBR-Elm’s task harder, we purposely do not include the Maybe, Result, and List cata-
morphisms in its library (known as maybe, either, and foldr in Haskell) even though to do so would
simply require defining these functions in standard Elm code (which we do in Section 9.1). Many
real-world functions that use structural recursion can easily be rewritten to use a single catamor-
phism without any synthesis whatsoever (and, as we will see, this is actually the first step to our
canonicalization function). Thus, to force CBR-Elm to find nontrivial compositions of components,
we do not provide it the opportunity to return the trivial result of a single catamorphism.

Our CBR-Elm canonicalization function operates with respect to higher-order unification1 and
has two main stages: (1) rewrite the program using catamorphisms, and (2) perform catamorphism
fusion wherever possible. We present a worked example here with the notion of a catamorphism
specialized to if and foldr and refer the reader to Meijer et al. [76] for additional background.
Consider the following input program:

Inputmain p f xs =

case xs of [] → []

hd :: tl → if p hd then f (f hd) :: main p f tl else main p f tl

CBR-Elm produces the following output for this program:

OutputList.map (𝜆x. f (f x)) (List.filter p xs)

To do so, CBR-Elm first canonicalizes the input program. Step (1) is to rewrite the right-hand
side using catamorphisms:

foldr (𝜆y z → if p y then f (f y) :: z else z) [] xs

Step (2) is to perform catamorphism fusion, which in this case is not possible.
CBR-Elm then enumerates sketches such as List.map ?1 (List.filter ?2 ?3 ) to canonical-

ize. Step (1) of canonicalization is to rewrite the sketch using catamorphisms:
foldr (𝜆hd acc → ?1 hd :: acc) []

(foldr (𝜆hd acc → if ?2 hd then hd :: acc else acc) [] ?3 )

Step (2) is to perform catamorphism fusion to rewrite the program into the form foldr g [] ?3 .
Meijer et al. [76]’s catamorphism fusion theorem says that it is sufficient for g to satisfy

g y (foldr (𝜆hd acc → ?1 hd :: acc) [] ?3 ) =

foldr (𝜆hd acc → ?1 hd :: acc) [] (if ?2 y then y :: ?3 else ?3 )

for all y, which is non-constructive in that it does not provide a definition for g. Partial evaluation [41,
56] does not help solve for g here, but we can recursively perform catamorphism fusion on the if

expression (also known as deforestation [115]):
g y (foldr (𝜆hd acc → ?1 hd :: acc) [] ?3 ) =

if ?2 y then foldr (𝜆hd acc → ?1 hd :: acc) [] (y :: ?3 )

else foldr (𝜆hd acc → ?1 hd :: acc) [] ?3

We can then perform partial evaluation on the then branch, which yields:
g y (foldr (𝜆hd acc → ?1 hd :: acc) [] ?3 ) =

if ?2 y then ?1 y :: foldr (𝜆hd acc → ?1 hd :: acc) [] ?3
else foldr (𝜆hd acc → ?1 hd :: acc) [] ?3

1Technically, higher-order unification is undecidable [42]. Therefore, we settle for the finer relation of running Huet’s
higher-order unification semi-decision algorithm [52] for 1,000 steps. We could have also chosen from the many variants of
higher-order unification such as higher-order pattern unification [86], which is complete for a strict subset of the 𝜆-calculus.



12 Justin Lubin, Jeremy Ferguson, Kevin Ye, Jacob Yim, and Sarah E. Chasins

Finally, we can replace foldr (𝜆hd acc → ?1 hd :: acc) [] ?3 with a fresh variable z to obtain
g y z = if ?2 y then ?1 y :: z else z, resulting in the following overall canonicalized sketch:

foldr (𝜆y z → if ?2 y then ?1 y :: z else z) [] ?3

This expression higher-order unifies with the canonicalized input program, resulting in the substi-
tution { ?1 ↦→ 𝜆x. f (f x), ?2 ↦→ p, ?3 ↦→ xs} and the overall output listed above.
By Lemma 4.13, this procedure is a canonicalization function for Elm with respect to higher-

order unification because it is computable and semantics-preserving—with one exception. Elm is a
strict language, and catamorphism fusion is technically valid only under a lazy evaluation scheme
because it can change whether or not a program diverges; even in Haskell, the presence of the seq

operator makes catamorphism fusion an unsound transformation in general. We inherit the general
limitation of syntactic transformations often becoming unsound in the presence of diverging code.

6.2 Numerical Computing Combinators in NumPy

For CBR-Python, we synthesize programs operating over 1D arrays using 21 NumPy functions
(listed in an appendix in the supplementary materials), including some that return numbers such as
np.sum, fixed-sized arrays such as np.add and np.convolve, and variable-sized arrays such as filtering
(e.g. x[x > 0]). We also include two additional functions we call cosmetic (list and np.vectorize)
that provide no performance benefits but can expose opportunities to apply other functions.
Unlike in CBR-Elm, our CBR-Python canonicalization function is specific to these library

functions, and adding additional functions would require additional work; it would be interesting
future work to compute the necessary rewrites automatically via array-aware program slicing.
Our CBR-Python canonicalization function operates with respect to a small set of relations

backed by an e-graph, including symmetric arithmetic rewrites such as 𝑎 ↔ 𝑎 · 1 and asymmetric
rewrites that capture NumPy broadcasting functionality (in which a scalar can be treated as an
array) such as 𝑎[𝑖] = 𝑛 → 𝑎[𝑖] = Broadcast(𝑛) [𝑖]. It has two main stages: (1) non-recursively
inline the top-level NumPy function call, if possible, and (2) perform partial evaluation on the result.

We present two worked examples to illustrate this procedure. First, consider the following input
program that computes a vector dot product of x and y:

Inputs = 0

for i in range(len(x)):

s += x[i] * y[i]

s

CBR-Python produces the following output for this program:

Outputnp.sum(np.multiply(x, y))

CBR-Python’s canonicalization function happens not to modify this input program. However,
consider the candidate sketch np.sum(np.multiply( ?1 , ?2 )). Step (1) of canonicalization is to
inline the top-level function (below, left), and Step (2) is to perform partial evaluation (below, right).

?3 = 0

for ?4 in range(len(np.multiply( ?1 , ?2 ))):

?3 += np.multiply( ?1 , ?2 )[ ?4 ]

?3

?3 = 0

for ?4 in range(len( ?1 )):

?3 += ?1 [ ?4 ] * ?1 [ ?4 ]

?3

Here partial evaluation uses the rules len(np.multiply(a, b))→ len(a) and np.multiply(a, b)[i]

→ a[i] * b[i]. The second expression unifies with the canonicalized input program, yielding the
substitution { ?1 ↦→ x, ?2 ↦→ y, ?3 ↦→ s, ?4 ↦→ i} and overall output above.

As a second example, consider the following input program that computes a rolling sum of x:
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Inputy = np.zeros(len(x) - WINDOW_SIZE + 1)

for i in range(len(y)):

s = 0

for j in range(WINDOW_SIZE):

s += x[i + j]

y[i] = s

y

CBR-Python produces the following output for this program:

Outputnp.convolve(x, np.full(WINDOW_SIZE, 1), mode="valid")

Again, CBR-Python’s canonicalization function happens not to modify this input program. How-
ever, consider the candidate sketch np.convolve( ?1 , np.full( ?2 , ?3 ), mode="valid"). Step (1)
is to inline the top-level NumPy function:

?4 = np.zeros(len( ?1 ) - len(np.full( ?2 , ?3 )) + 1)

for ?5 in range(len( ?4 )):

?6 = 0

for ?7 in range(len(np.full( ?2 , ?3 ))):

?6 += ?1 [ ?5 + ?7 ] * np.full( ?2 , ?3 )[len(np.full( ?2 , ?3 )) - ?7 - 1]

?4 [ ?5 ] = ?6
?4

Step (2) is to perform partial evaluation. Here the partial evaluator uses the rules len(np.full(a, b))

→ a and np.full(a, b)[i] → b:

?4 = np.zeros(len( ?1 ) - len(np.full( ?2 , ?3 )) + 1)

for ?5 in range(len( ?4 )):

?6 = 0

for ?7 in range( ?2 ):

?6 += ?1 [ ?5 + ?7 ] * ?3
?4 [ ?5 ] = ?6

?4

This unifies with the canonicalized input program (modulo 𝑎 ↔ 𝑎 · 1), yielding the substitution
{ ?1 ↦→x, ?2 ↦→WINDOW_SIZE, ?3 ↦→1, ?4 ↦→y, ?5 ↦→i, ?6 ↦→s, ?7 ↦→j} and overall output above.

Unfortunately, it is impossible to define a semantics-preserving program transformation in
Python due to the ability of Python code to arbitrarily inspect the call stack. Such features make it
impossible to prove any program transformation is a canonicalization function. However, for the
set of programs for which the above procedure is semantics-preserving, Lemma 4.13 proves that it
is a canonicalization function; in practice, we believe this space of programs to be quite large, and
none of the synthesized programs in our Section 8.4 evaluation fell outside this space.

7 IMPLEMENTATION

We implemented our component-based refactoring instantiations in a tool called Cobbler in
approximately 5,000 lines of OCaml code (not including the frontend nor the experimental setup
we describe in Section 8). We support only a subset of Elm and Python, omitting features such as
partially-applied data constructors and nested patterns in Elm, and dictionaries, method calls, and
statements not of the form of an assignment, a call to .append(), an if, or a for in Python. To work
with e-graphs, we use the OCaml library Ego [114], which is based on the Rust library egg [117].
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8 EVALUATION

Although we are most interested in the synthesis framework itself—rather than our two particular
instantiations—we used the instantiations as opportunities to explore if our framework can work
well in practice. Thus, for our empirical evaluation, we investigated two main research questions:
RQ1. How fast does Cobbler run on real-world programs?
RQ2. To what extent does Cobbler improve real-world programs?
We investigated these questions via three experiments detailed in the following sections using a

corpus of programs from The Stack dataset [60]. In Experiment 1, we answered RQ1 by measuring
Cobbler’s synthesis time. In Experiment 2, we answered RQ2 for Elm by running a user study
(𝑛 = 159) to explore when Cobbler’s outputs are preferable to its inputs. In Experiment 3, we
answered RQ2 for Python by measuring how long Cobbler’s outputs take to run on increasing
data sizes (accounting for synthesis time) compared to its inputs.
Our evaluation does not compare against a baseline. An appropriate baseline would need to

take a program and, without further specification, soundly refactor it using a given set of library
components. The Haskell linter hlint [80] technically meets these requirements, as it provides hard-
coded linting rules that replace pattern matches over Maybe expressions with (single) combinators.
However, hlint does not support refactoring over other types or using more than one component,
yet, as we will see, only 16% of Cobbler Elm transformations required just one component. Thus,
we felt a comparison against hlint would not be informative to understanding Cobbler nor be fair
to hlint given its purpose as a linter rather than synthesizer. As we discuss in Section 10.2.1, other
than hard-coded approaches, Cobbler is the first tool in the category we outline above.

Additional questions. In addition to our main research questions, we asked three additional
research questions to gain a better fundamental understanding of our framework and instantiations:
RQ3. How much does semantic unification help Cobbler?
RQ4. How does Cobbler scale with the number of components it uses for a solution?
RQ5. How long do each of the Cobbler sub-components take to run?
We answer RQ3 with an ablation study, RQ4 by running Cobbler on synthetic programs that

require increasingly many components, and RQ5 by timing Cobbler at a granular level.

8.1 Input Programs

Wedrew real-world input programs for our experiments fromThe Stack [60], a dataset of permissively-
licensed open-source code from GitHub repositories that includes programs written in over 300
languages. From all 90,637 Elm files, we drew 3,371 Elm functions that immediately pattern-match
on a variable of type Maybe, Result, or List; these constituted our input programs for CBR-Elm.
From 1,000,000 of the Jupyter notebooks, we drew 572 cells that included a set of variable definitions
followed by a for loop followed by a final line consisting of a variable, as in Section 6.2; these
constituted our input programs for CBR-Python. These numbers exclude programs using features
orthogonal to the synthesis task but which would require additional engineering effort, such as
nested patterns in Elm and dictionaries in Python (see Section 7) and Python programs using the
pandas library [109]. Aside from this constraint, we drew all such Elm programs and Jupyter cells.

We split our input programs into training and test sets. We made all implementation decisions for
Cobbler based on the training set (including which library components to use) and ran Cobbler on
the test set only for the final evaluation.2 To split the training and test sets, we split the input files
into training and test sets, and all programs extracted from a given file went into the associated set.
2With one exception: We noticed bugs in Cobbler’s Python post-processing (orthogonal to the synthesis algorithm) and
fixed those after running Cobbler on the test set. The end result of this is that Cobbler succeeded on one fewer program.
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Using this process, we reserved 411 of the 3,371 Elm programs and 217 of the 572 Python programs
for the training set, leaving a test set of 2,960 Elm programs and 355 Python programs.

8.2 Experiment 1: Answering RQ1 (on Cobbler Performance)

8.2.1 Setup. We ran Cobbler on each input program and collected the following information:
(i) whether synthesis succeeded or failed, (ii) the synthesized program, if successful, and (iii) how
long synthesis took (median of 10 runs). We did not use a hard time cutoff; instead, based on
performance on the training set, we chose a synthesis depth cutoff of 3 for Elm and 4 for Python.
We ran this experiment (and all following) on a 2020 MacBook Pro with a 2.3 GHz Quad-Core Intel
Core i7 processor and 32 GB of RAM running macOS Big Sur with OCaml v4.14 and Python v3.11.
With this setup, Cobbler applied to 2,007/2,960 Elm programs and 102/355 Python programs3

in the test set. Figure 4 summarizes how many components each refactored program contains;
because Cobbler enumerates sketches in increasing size, this metric serves as a rough proxy for
the complexity of the task and indicates that Cobbler does more than naïve inlining.

8.2.2 Results. Cobbler’s median synthesis time was less than 0.5s across both successful

and unsuccessful runs for both Elm and Python, and all successful runs took less than 1s.

Theoretically, as an exhaustive enumerative synthesizer, the asymptotic running time of Cobbler
is at least exponential in the number of components used (which we validate in Section 8.5.2). In
practice, the successful Elm and Python runs both took median synthesis times of 0.02s and the
unsuccessful Elm and Python runs took median synthesis times of 0.21s and 0.39s respectively.
3Cobbler reports 6 additional successes, but upon manual inspection, we deemed these runs as failures due to bugs in our
implementation and omitted them from all timing experiments. Cobbler also reported success on a run but did not properly
namespace one of the components it used, so its definition was shadowed; we counted this as a success in our analysis.
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much shorter the combinator style is compared to the direct style.

Figure 5 summarizes the synthesis time for all input programs broken down by language and
whether or not they succeeded. Figure 6 summarizes the synthesis times for successful runs broken
down by language and the number of components used.

Remark. Unsuccessful synthesis times can be arbitrarily inflated or deflated by adjusting the
maximum enumeration depth, as an unsuccessful run means that Cobblermust consider the entire
search space (except when Cobbler performs a lightweight, syntax-based early cutoff by checking
that its library of functions is insufficient for the task). On a successful run, however, the maximum
enumeration depth does not affect the synthesis time (other than possibly causing the successful
run to become unsuccessful), as Cobbler will stop at the first solution in finds.

8.3 Experiment 2: Answering RQ2 (on Cobbler Improving Programs) for Elm

8.3.1 Setup. For Elm, we operationalize “improving programs” as increasing their subjective
desirability to real statically-typed functional programmers, which we assessed via a user study
approved by our institution’s IRB. However, we do not claim that combinator-style programs are

always preferable to direct-style programs. Consequently, a result that programmers always prefer
the output of Cobbler to its input for Elm would be surprising.
To observe when Cobbler improves Elm programs, we randomly sampled the input-output

program pairs from the test set of Experiment 1 whose outputs used more than one combinator.
Within each of three categories—Maybe, Result, and List programs—we randomly sampled 200 such
pairs. (In the case of List, the test set only included 62 such pairs, so we included all 62.) We then
created a survey with randomized order that displayed a random sample of these pairs (equally
distributed among the three types) and, for each pair, asked participants which program they
preferred.4 We did not refer to either program as “input,” “output,” “direct-style,” “combinator-style”
or any other descriptive label; we merely presented their source code in a random order.
We distributed this survey via email, Slack, and X (formerly Twitter) along with a request to

share the survey more broadly. We did not compensate participants, and we requested that only
self-identified statically-typed functional programmers fill out the survey. In total, we had 159
participants who overall answered 3,206 comparison questions.

8.3.2 Results. Participants preferred combinators (Cobbler’s output) in approximately

one quarter of the Maybe and Result code (26% and 24% respectively) and approximately

4The survey also asked participants to indicate which program they thought was more readable, but the results were nearly
identical, so we do not report on them further here.
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half of the List code (46%). Although not necessarily indicative of causality, Figure 7 shows that
participants more often preferred combinators for programs operating over a recursive datatype
(List) than those operating over simpler non-recursive datatypes (Maybe and Result). Moreover,
Figure 8 shows that participants tended to prefer combinators when the textual size of the program
was much shorter than in the direct style, which was most often the case with List programs. We
again stress that these trends do not necessarily indicate causality.

8.4 Experiment 3: Answering RQ2 (on Cobbler Improving Programs) for Python

8.4.1 Setup. For Python, we operationalize “improving programs” as increasing their performance.
Most input programs from Experiment 1 load input data from the authors’ file systems (which we
cannot access), load other external input data (such as online resources, also often inaccessible), do
not define their input data, or operate on small data represented in the text of the program (for
which the equivalent NumPy code is actually slower than the naïve Python). Thus, to observe when
Cobbler could provide helpful speedup, we took the successfully-refactored Python programs,
manually modified both the input and output programs to operate on data of sizes of 100, 101, . . . , 108,
and recorded how long each of the sixteen variants took to terminate (median of 10 runs).

8.4.2 Results. When using performant NumPy functions, Cobbler’s outputs are more

often faster (even including synthesis time) than its inputs with a data size of at least 106;
at a data size of 108, the median speedup is 1.95×, and 42/56 programs exhibit speedups. In
Section 6.2, we discussed that not all components are intended to improve performance; some are
merely cosmetic. We break down our performance results—which we visualize in Figure 9—based
on whether or not Cobbler refactors the program to use at least one non-cosmetic function. To
account for synthesis time, we define speedup as

original program execution time ÷ (refactored program execution time + Cobbler synthesis time)
and plot this quantity over input data size in Figure 9.
We used only 100/102 of the transformed Python programs for this experiment because two

input programs exponentiated integers to powers that scaled with the size of the input data; these
two input programs did not terminate on all data sizes within one hour or crashed due to overflow.

8.5 Additional Experiments: Answering RQ3, RQ4, and RQ5

8.5.1 Answering RQ3 (on How Much Semantic Unification Helps Cobbler). We ran Cobbler on
the same programs as in Experiment 1, but instead of using higher-order unification for Elm and
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e-unification for Python, we used syntactic unification (modulo holes). We found that semantic

unification approximately doubles the number programs Cobbler can refactor for Elm,

but has little effect for Python. We plot this result in Figure 10.

8.5.2 Answering RQ4 (on Cobbler’s Scalability). We ran Cobbler on programs we constructed to
require increasingly many components and measured how long Cobbler took to find the solutions.
We found that Cobbler scales at least exponentially in the number of components it

uses for a solution, as expected of an exhaustive enumerative synthesizer We plot this result in
Figure 11.

8.5.3 Answering RQ5 (on Cobbler’s Timing Breakdown). We ran Cobbler on the same programs as
in Experiment 1, but with more granular timing instrumentation. Specifically, we measured the time
Cobbler spent (median of 10 runs) during (i) canonicalization, (ii) unification, and (iii) enumeration
(not including canonicalization or unification). We found that Cobbler spends most of its time

performing unification. We plot this result in Figure 12.

8.6 Threats to Validity

As we discuss in Section 7, Cobbler does not support the entirety of the Elm and Python languages,
which may introduce sample bias for the programs used for all three experiments. Additionally,
using only The Stack (which contains programs only from GitHub) may introduce sample bias.
For Experiment 2, although the input code is real-world code drawn from The Stack, participants
indicated their code style preference removed from a larger context or codebase, which may not
be representative of real-world conditions. We also ran Cobbler on functions that programmers
decided to commit to GitHub in a direct style, which may not be representative of the kinds of
functions programmers would want to run Cobbler on to convert to combinator style. Moreover,
survey respondents may not be representative of the statically-typed functional programming
community as a whole. For Experiment 3, we generated synthetic variants of the real programs from
The Stack with varying input data sizes, which may not be representative of real-world conditions.

9 DISCUSSION AND LIMITATIONS

9.1 When Does Cobbler Fail?

Cobbler refactors many real-world programs, but why does it sometimes fail? To answer this
question, we took programs Cobbler failed to refactor and attempted to manually refactor them.
For CBR-Elm, we took all 3 failed Maybe programs and randomly sampled 10 failed Result programs
and 10 failed List programs. For CBR-Python, we randomly sampled 20 failed Python programs.
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For CBR-Elm, we successfully refactored all 23/23 failed Elm programs and found that:

(Elm1) 3/3 failed Maybe programs failed due to the limitation of our unification algorithm that it
cannot unify terms of the form 𝜆𝑓 . ? 𝑥 with 𝜆𝑓 . 𝑓 𝑥 .

(Elm2) 10/10 failed Result programs and 5/10 failed List programs failed due to an insufficient
component library—specifically, not having catamorphisms (as we discuss in Section 6.1)
or the trivial pattern-matching combinator List.uncons. We verified that these failures
were due to an insufficient library by temporarily adding these functions to the component
library and observing that Cobbler could indeed refactor these 15 programs successfully.

(Elm3) 2/10 failed List programs failed due to Cobbler only supporting catamorphisms and not
other recursion schemes; specifically, these programs relied on foldl.

(Elm4) 3/10 failed List programs failed due to requiring substantial non-syntactic reasoning (two
for using an early-cutoff search idiom that is not possible to capture directly with a cata-
morphism, and one for requiring an entirely different approach to use a catamorphism).

For CBR-Python, we successfully refactored 19/20 failed Python programs; we were unable to
refactor the last one because it required jagged arrays, which NumPy does not support.

For 11/20 failed Python programs, we found that a small semantics-preserving manual modifica-
tion to the input program enabled Cobbler to refactor the program (we checked this by performing
the modification, then re-running Cobbler). We do not suggest that programmers should do any of
these transformations; rather, we showcase these as a demonstrations of particular failure modes.

(Py1) 4/20 failed programs failed due to our insufficient support for np.vectorize (e.g., not in-
troducing lambdas to vectorize over method accesses). Our manual modification was to
introduce the relevant lambdas ourselves (e.g., defining f = lambda x: x.m()).

(Py2) 3/20 failed programs failed due to working with dictionaries (which we consider out of
scope in Section 7). Our manual modification was to introduce a single helper variable that
encapsulated all the dictionary operations to a single line as a pre-processing step.

(Py3) 2/20 failed programs failed due to our insufficient support for multi-argument range calls.
Our manual modification was to modify such calls to use the single-argument version.

(Py4) 1/20 failed programs failed due to using a helper variable in the body of a loop. Our manual
modification was to inline this variable.

(Py5) 2/20 failed programs failed because Cobbler does not synthesize complex expressions
as arguments to some functions. For example, Cobbler does not synthesize the filter
operation (x + x)[(x + x) > 0]. Our manual modification—which was a bigger hint that
the modifications above—was to introduce intermediate names for some expressions.

There were no small modifications to the remaining 8/20 failed Python programs that would
enable Cobbler to refactor them successfully:

(Py6) 4/20 failed programs failed due to an insufficiently strong canonicalization function for
compositions of np.where with other functions.

(Py7) 2/20 failed programs failed due to working with multi-dimensional arrays or lists of arrays
(which we consider out of scope in Section 6.2).

(Py8) 1/20 failed programs failed due to requiring substantial non-syntactic reasoning; specifically,
for searching for the last element of a list satisfying a predicate, which requires subtle
indexing with np.argwhere.

Takeaways. Failure mode Elm2 shows that the library of combinators has a large impact on

what code can be refactored, and Elm3 suggests that implementing additional recursion schemes
(which should be straightforward given their similar fusion laws) could be useful in practice.
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Failure modes Py1–Py5 show that equivalence by canonicalization fails if the canonicaliza-

tion function is not good enough in the sense of Definition 4.17. Given a canonicalization
function 𝜙 with respect to 𝑈 and two programs 𝑃1, 𝑃2 with J𝑃1K = J𝑃2K yet ¬𝑈 (𝜙 (𝑃1), 𝜙 (𝑃2)), it
is always possible to extend 𝜙 and 𝑈 to a better canonicalization function 𝜙 ′ ≻ 𝜙 with respect
to 𝑈 ′ such that 𝑈 ′ (𝜙 ′ (𝑃1), 𝜙 ′ (𝑃2)). Extending these canonicalization functions thus becomes an
engineering tradeoff: Which extensions are worth the human effort of implementing them?

Indeed, the modifications in Py1–Py4 could easily be incorporated into CBR-Python’s canonical-
ization function, but property-based testing for equality (PBT)—which unsoundly checks the equality
of two programs by checking that they have the same output on many different inputs—needs
no domain-specific rules. Overall, equivalence by canonicalization trades completeness for

soundness (which is most evident in Elm4 and Py8) and PBT makes the opposite tradeoff.
Lastly, one limitation this discussion does not capture is that equivalence by canonicalization

requires source code to be available, whereas PBT, for example, does not.

9.2 Practical Tips for Component-Based Refactoring

Although authors of canonicalization functions can directly use off-the-shelf transformations
like catamorphism fusion, knowing which transformations to employ requires domain expertise.
Unlike PBT, for example, we do not expect end users to be able to define new canonicalization
functions to check semantic equivalence without such domain expertise. To make implementing
new instantiations of component-based refactoring easier, we provide a short sequence of steps for
bootstrapping a canonicalization function and unification relation:

(1) Identify a baseline notion of equivalence for the domain that is as simple as possible

to serve as the unification relation.Our timing breakdown analysis in Section 8.5.3 shows
that Cobbler spends most of its time performing unification. Intuitively, canonicalization
functions are typically syntax-directed and unification typically requires non-directional
reasoning, so complex unification relations can be a bottleneck. However, our ablation
analysis in Section 8.5.1 shows that it is possible for this relation to be too simple; in the case
of CBR-Python, even though our performance analysis in Section 8.2 shows that Cobbler
runs fast in practice, our e-graph unification takes most of the time of synthesis, yet does
not substantially increase the number of programs Cobbler can refactor.

(2) Craft the input and output program for a simple two-component synthesis problem.

We found it helpful to start with the input and output programs for the non-recursive Elm
example in Section 2 and the dot product Python example in Section 6.2.

(3) Inline the components in the output program of the previous step. It can be helpful to
consider inlining both components (as in CBR-Elm) or just one of them (as in CBR-Python).

(4) Manually rewrite the resulting program of the previous step to be more idiomatic

for the domain. For example, for Elm, we rewrote the case expression in the scruti-
nee of another case expression as a single case expression, and, for Python, we rewrote
np.multiply(x, y)[i] as x[i] * y[i].

(5) Identify relevant (existing) program transformations that perform this rewrite.

Both CBR-Elm and CBR-Python perform a type of fusion (combining multiple data passes
into one), suggesting that fusion transformations may be fruitful to investigate first. If no
existing transformations exactly apply, the rewrite will need to be generalized to a new
transformation.

The goal for Step (4) is to rewrite the output program to be in a form that unifies with the input
program under the relation defined in Step (1). If this unification is achieved, then the transformation
in Step (5) constitutes a canonicalization function (assuming it satisfies the required properties);
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this canonicalization function can then be further expanded by repeating this process for more
complicated examples. If this unification is not achieved, it may be because the relation defined in
Step (1) is too simple or the example in Step (2) is too complicated for a single transformation.

10 RELATEDWORK

10.1 Program Equivalence Checking

Equivalence by canonicalization is a form of sound, automated program equivalence checking.
Although proof assistants [87, 89, 108] provide facilities for semi-automatically proving program
equivalence, we restrict our review of related work to automatic program equivalence checkers.

10.1.1 Sound Automated Techniques. Program equivalence checking is a type of relational ver-
ification, or verification of properties that include multiple programs. Many existing relational
verification tools [25, 29, 30, 69, 99, 105, 111], techniques [11, 12, 27, 32, 48, 81, 100, 112, 113], and
formalisms [7, 13, 15, 62, 65, 118] depend on logical specification and verification. Techniques based
on equality saturation and e-graphs [107, 117] enable syntactic reasoning, but it can be challenging
to represent arbitrary canonicalization functions using first-order syntactic rewrite rules.

Normalization by evaluation [16] is an approach to normalization in which programs are evaluated
to a semantic domain and reified back to the syntactic domain. A sound (but not necessarily
complete) semantic equivalence check can be done by checking the syntactic equality of these
resultant terms, as in equivalence by canonicalization. However, this process relies on evaluation,
and thus may not terminate for a Turing-complete language. Equivalence by canonicalization
can be viewed as a variant of normalization by evaluation in which (i) evaluation is swapped
out for a syntactic transformation that satisfies some (but not all) properties of evaluation while
still guaranteeing termination, and (ii) reification is unnecessary and thus omitted. Interestingly,
Shashidhar et al. [100] and Verdoolaege et al. [113] also compute a limited semantics-preserving
normal form of associative operators in the context of program dependence graphs by flattening
binary associative operator applications into multi-ary applications, indicating that it may be
fruitful to consider canonicalization functions over the language of program dependence graphs.

10.1.2 Unsound Automated Techniques. Many verifiers in the previous section can be used in
bounded relational verification, in which loops and recursion are unrolled up to a fixed depth and the
relational logical property (such as program equivalence) is verified on the resulting program, as in
bounded model checking [19]. Alternatively, random testing techniques such as property-based
testing [28] and coverage-guided fuzzing [121] do not require or infer logical specifications about
the programs at hand, but do require running the programs many times on a variety of inputs.

10.2 Program Synthesis

10.2.1 Component-Based Synthesis. Component-based refactoring is a form of component-based
synthesis, where the goal is to synthesize compositions of components. This contrasts with recursive
functional synthesis, where the goal is to synthesize functions using direct recursion [3, 33, 36, 37, 59,
66, 71, 79, 82, 88, 94, 120]. Component-based synthesizers sometimes rely on logical specifications
[55] or types [21, 39, 46, 53, 61, 73]; many use input-output examples [45], including some for
functional combinators [40, 51, 102, 106] and numerical computing combinators [14, 83, 101].
Component-based synthesizers sometimes target refactoring, including verified lifting [1, 18,

26, 58, 64] (in which logical summaries of provided programs are inferred and fed to a logic-based
synthesizer to find an equivalent formulation in a domain-specific language) and NGST2 [74] (in
which a neural-guided synthesizer translates imperative code to functional code annotated with
custom logical specifications using a bounded verification check). NGST2’s neural architecture is
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orthogonal to our idea of equivalence by canonicalization; an interesting avenue of future work
could be to slot their neural-guided search in as an enumerator in our framework.
Although JLibSketch [75] does not target refactoring, it uses algebraic specifications [49] to

synthesize code, which get compiled to logical specifications in JSketch [54] and ultimately
Sketch [104]. Like our canonicalization functions, algebraic specifications are syntactic rewrites.
However, unlike our canonicalization functions, these rewrites must be of the form pattern ⇒ result,
where pattern and result are opaque compositions of library functions. It is therefore not clear to us
that these specifications could encode transformations like the non-constructive catamorphism
fusion we described in Section 6.1. Moreover, our framework dispenses with logical specifications
entirely: canonicalization functions can reuse off-the-shelf transformations developed by the
programming languages community without any encoding into logical systems.
Lastly, Smith and Albarghouthi [103] introduce a generalization of the popular optimization

in enumerative synthesis to consider only terms in normal form (such as 𝛽-normal 𝜂-long 𝜆-
terms) by enumerating normal forms of arbitrary term rewriting systems. They rely on syntactic
transformations not as a form of equivalence checking of candidates sketches as we do, but as an
optimization for enumerating candidates in the first place.

10.2.2 Using Unification for Synthesis. Although anti-unification is common in program synthe-
sis [2, 5, 6, 24, 34, 53, 77, 95, 96], unification is rarer, but has been used in e-graph based synthesis
approaches [84, 85] and to ensure input-output example satisfaction [21].

10.2.3 Library Learning. In a sense, the converse to our problem statement is the library learning

problem: given a corpus of code, find a library of components to rewrite it [22, 24, 34, 35].

10.3 Program Compilation

Our particular canonicalization functions are inspired by compiler optimizations such as fusion [4,
76, 115] and partial evaluation [41, 56]. Our NumPy synthesizer could also be understood as a form of
search-based compilation [9, 90–92, 98, 116, 119] or automatic parallelization [8, 17, 23, 38, 47, 63, 97].

11 CONCLUSION

In this paper, we introduced a sound, automated semantic equivalence check called equivalence

by canonicalization. This technique (i) requires only the source code as a specification and (ii) can
leverage decades of work from the programming languages community on syntactic transformations
that were first developed for optimizing compilers. We use this technique in our component-

based refactoring synthesis framework, which translates direct-style programs (like those that
use pattern matching and recursion in Elm or for loops and lists in Python) into combinator-
style programs (like those that use higher-order functional combinators in Elm or numerical
computing combinators provided by NumPy). We found that this technique allowed us to synthesize
combinator-style variants of thousands of real programs. Moreover, synthesis based on equivalence
by canonicalization is fast; the median synthesis time was less than half a second. We applied our
technique to synthesize Elm programs that programmers often preferred and Python programs that
ran 1.95× faster, even accounting for synthesis time. The applicability of this synthesis technique
for two differing purposes suggests we can use synthesis to accomplish refactoring across a variety
of domains without requiring specification beyond the input program.

DATA AVAILABILITY STATEMENT

Cobbler is open source and freely available at https://github.com/justinlubin/cobbler. We also
provide an archived snapshot of the Cobbler codebase and evaluation setup (including the input
programs we used) for reproduction as a virtual machine hosted on Zenodo [72].

https://github.com/justinlubin/cobbler
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A SUFFICIENT CONDITIONS FOR CANONICALIZATION FUNCTIONS

We found the following theory helpful for thinking about and working with canonicalization
functions.

Definition A.1 (Canonicalization function ingredients). Let𝑈 ⊆ ProgL?×ProgL?×ΣL be a relation
and 𝜙 : ProgL? → ProgL? a function. Then:
• 𝜙 is substitution-preserving on J·KL if for all 𝑆 ∈ ProgL? and 𝜎 ∈ ΣL , J𝜙 (𝜎𝑆)KL = J𝜎𝜙 (𝑆)KL .
• 𝜙 is injective on J·KL if for all 𝑃1, 𝑃2 ∈ ProgL , J𝜙 (𝑃1)KL = J𝜙 (𝑃2)KL ⇒ J𝑃1KL = J𝑃2KL .
• 𝜙 is semantics-preserving if for all 𝑆 ∈ ProgL? , J𝜙 (𝑆)KL? = J𝑆KL? .

LemmaA.2 (Canonicalization function recipe). Let𝑈 be a partial semantic unification relation

for L and 𝜙 : ProgL? → ProgL? be a computable function that is substitution-preserving on J·KL and

injective on J·KL . Then 𝜙 is a canonicalization function for L with respect to𝑈 .

Proof. We have
(𝑆1, 𝑆2, 𝜎) ∈ Ker𝑈 𝜙 ⇒ 𝑈 (𝜙 (𝑆1), 𝜙 (𝑆2), 𝜎)

⇒ J𝜎𝜙 (𝑆1)KL = J𝜎𝜙 (𝑆2)KL
⇒ J𝜙 (𝜎𝑆1)KL = J𝜙 (𝜎𝑆2)KL
⇒ J𝜎𝑆1KL = J𝜎𝑆2KL
⇒ J𝑆1K ≡𝜎

L J𝑆2K
⇒ (𝑆1, 𝑆2, 𝜎) ∈ Ker≡L J·KL? ,

so Ker𝑈 𝜙 ≤ Ker≡L J·KL? . □

Lemma A.3. If 𝜙 : ProgL? → ProgL? is semantics-preserving, then 𝜙 is (i) substitution-preserving

on J·KL and (ii) injective on J·KL .

Proof. For (i), if 𝑆 ∈ ProgL? and 𝜎 ∈ ΣL , then
J𝜙 (𝜎𝑆)KL = J𝜎𝑆KL = J𝑆KL? (𝜎) = J𝜙 (𝑆)KL? (𝜎) = J𝜎𝜙 (𝑆)KL .

For (ii), the result is immediate. □
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B PROOFS FOR MAIN PAPER

We now provide proofs of the lemmas and theorem in the main paper.

Theorem 4.5. Algorithm 1 always terminates, and if it returns ⊤ on (𝜙, 𝑃1, 𝑃2), then J𝑃1K = J𝑃2K.

Proof. Termination is immediate from the computability of canonicalization functions and the
decidable syntactic equality of Prog. Correctness is immediate from the fact thatKer𝜙 ≤ Ker J·K. □

Lemma 4.13. Let 𝑈 be a partial semantic unification relation for L and 𝜙 : ProgL? → ProgL? be

computable and semantics-preserving. Then 𝜙 is a canonicalization function for L with respect to𝑈 .

Proof. Immediate corollary of Lemma A.2 and Lemma A.3. □

Theorem 4.15. Let 𝜙 be a canonicalization function for a hole-free languageL with respect to𝑈 and

𝑢 be an inference algorithm for𝑈 . Then EbC(𝜙,𝑢, ·, ·) is a semi-inference algorithm for Ker≡L J·KL? .

Proof. Computability follows from the computability of 𝜙 and 𝑢. For correctness, suppose
EbC(𝜙,𝑢, 𝑆1, 𝑆2) = 𝜎 . Then 𝑢 (𝜙 (𝑆1), 𝜙 (𝑆2)) = 𝜎 , so 𝑈 (𝜙 (𝑆1), 𝜙 (𝑆2), 𝜎). As Ker𝑈 𝜙 ≤ Ker≡L J·KL? ,
we have J𝑆1KL? ≡𝜎

L J𝑆2KL? . □

Theorem 4.19. Let 𝜙1 and 𝜙2 be canonicalization functions for a hole-free language L with respect

to𝑈 1 and𝑈 2 and let 𝑢1 and 𝑢2 be inference algorithms for𝑈 1 and𝑈 2. Suppose 𝜙1 ⪰ 𝜙2. Then:
(1) If EbC(𝜙2, 𝑢2, 𝑆1, 𝑆2) = 𝜎2 for some hole substitution 𝜎2 ∈ Σ, then EbC(𝜙1, 𝑢1, 𝑆1, 𝑆2) = 𝜎1 for

some hole substitution 𝜎1 ∈ Σ.
(2) If𝜙1 ≻ 𝜙2, there exist 𝑆1, 𝑆2 ∈ cl? Progwith EbC(𝜙2, 𝑢2, 𝑆1, 𝑆2) = ⊥ yet EbC(𝜙1, 𝑢1, 𝑆1, 𝑆2) = 𝜎1

for some hole substitution 𝜎1 ∈ Σ.

Proof.

(1) We must have 𝑢2 (𝜙2 (𝑆1), 𝜙2 (𝑆2)) = 𝜎2, so𝑈2 (𝜙2 (𝑆1), 𝜙2 (𝑆2), 𝜎2). Therefore,

(𝑆1, 𝑆2) ∈ F (Ker𝑈 2 𝜙2) ≤ F (Ker𝑈 1 𝜙1),

so there exists some 𝜎1 ∈ Σ such that𝑈1 (𝜙1 (𝑆1), 𝜙1 (𝑆1), 𝜎1); the result follows from the fact
that 𝑢1 is an inference algorithm.

(2) We can take any (𝑆1, 𝑆2) ∈ F (Ker𝑈 1 𝜙1) \ F (Ker𝑈 2 𝜙2), which must be nonempty because
the refinement is strict. □

Theorem 5.3. Let 𝜙 be a canonicalization function for a hole-free language L with respect to𝑈 ,

𝑢 be an inference algorithm for 𝑈 , Enum be an enumerator LibL , and 𝑃 be a program in ProgL . If
Algorithm 3 terminates, it returns a component sketch 𝑆 ∈ cl? LibL and hole substitution 𝜎 such that

J𝜎𝑆KL = J𝑃KL .

Proof. If Algorithm 3 returns (𝑆, 𝜎), then EbC(𝜙,𝑢, 𝑃, 𝑆) = 𝜎 , so we have J𝑆KL? ≡𝜎
L J𝑃KL?

by Theorem 4.15. Hence, J𝜎𝑆K = J𝜎𝑃K = J𝑃K, where the second equality holds because L is
hole-free. □
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C COBBLER’S LIBRARY COMPONENTS

We chose the components to include inCobbler’s library based onCobbler s empirical performance
on the training set (and not the test set).

For CBR-Elm, we include the following 17 components mostly from the standard library:5

(1) Basics.or (||)
(2) Basics.and (&&)
(3) Basics.not

(4) Maybe.map

(5) Maybe.withDefault

(6) Result.map

(7) Result.mapError

(8) Result.withDefault

(9) List.append

(10) List.map

(11) List.filter

(12) List.concat

(13) List.any

(14) List.head

(15) List.tail

(16) List.find (not present in Elm standard library)
(17) List.findMap (not present in Elm standard library)

For CBR-Python, we include the following 21 NumPy components:

(1) np.sum

(2) np.prod

(3) Filtering (e.g. x[x > 0])

(4) np.multiply

(5) np.divide

(6) np.add

(7) np.subtract

(8) np.power

(9) np.equal

(10) np.not_equal

(11) np.full

(12) np.greater

(13) np.greater_equal

(14) np.less

(15) np.less_equal

(16) np.where

(17) np.roll

(18) np.convolve (with “valid” option)
(19) np.random.randint (with “size” argument)
(20) np.arange

(21) np.copy

As mentioned in Section 6.2, we also include two additional functions for CBR-Python we call
cosmetic (list and np.vectorize), which do not provide any performance benefits but can expose
opportunities to apply other functions.

5https://package.elm-lang.org/packages/elm/core/latest/

https://package.elm-lang.org/packages/elm/core/latest/
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