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ABSTRACT

We present a structure-aware code editor, called Deuce, that is

equipped with direct manipulation capabilities for invoking auto-

mated program transformations. Compared to traditional refactor-

ing environments, Deuce employs a direct manipulation interface

that is tightly integrated within a text-based editing workflow. In

particular, Deuce draws (i) clickable widgets atop the source code

that allow the user to structurally select the unstructured text for

subexpressions and other relevant features, and (ii) a lightweight,

interactive menu of potential transformations based on the cur-

rent selections. We implement and evaluate our design with mostly

standard transformations in the context of a small functional pro-

gramming language. A controlled user study with 21 participants

demonstrates that structural selection is preferred to a more tradi-

tional text-selection interface and may be faster overall once users

gain experience with the tool. These results accord with Deuce’s

aim to provide human-friendly structural interactions on top of

familiar text-based editing.
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1 INTRODUCTION

Plain text continues to dominate as the universal format for pro-

grams in most languages. Although the simplicity and generality

of text are extremely useful, the benefits come at some costs. For

novice programmers, the unrestricted nature of text leaves room

for syntax errors that make learning how to program more diffi-

cult [Altadmri et al. 2016]. For expert programmers, many editing
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tasks—perhaps even the vast majority [Ko et al. 2005]—fall within

specific patterns that could be performed more easily and safely

by automated tools. Broadly speaking, two lines of work have,

respectively, sought to address these limitations.

Structured Editing. Structured editors—such as the Cornell Program

Synthesizer [Teitelbaum and Reps 1981], Scratch [Maloney et al.

2010; Resnick et al. 2009], and TouchDevelop [Tillmann et al. 2012]—

reduce the amount of unstructured text used to represent programs,

relying on blocks and other visual elements to demarcate structural

components of a program (e.g. a conditional with two branches, and

a functionwith an argument and a body). Operations that create and

manipulate structural components avoid classes of errors that may

otherwise arise in plain text, and text-editing is limited to within

well-formed structures. Structured editing has not yet, however,

become popular among expert programmers, in part due to their

cumbersome interfaces compared to plain text editors [Monig et al.

2015], as well as their restrictions that even transitory, evolving

programs always be well-formed.

Text Selection-Based Refactoring. An alternative approach in inte-

grated development environments (IDEs), such as Eclipse, is to

augment unrestricted plain text with support for a variety of refac-

torings [Fowler 1999; Griswold 1991; Roberts et al. 1997]. In such

systems, the user text-selects something of interest in the program—

an expression, statement, type, or class—and then selects a transfor-

mation either from a menu at the top of the IDE or in a right-click

pop-up menu. This approach provides experts both the full flex-

ibility of text as well as mechanisms to perform common tasks

more efficiently and with fewer errors than with manual, low-level

text-edits. Although useful, this workflow suffers limitations:

(1) The text-selection mechanism is error-prone when the item to

select is long, spanning a non-rectangular region or requiring

scrolling [Murphy-Hill and Black 2008].

(2) All transformations must require a single “primary” selection

argument, and any additional arguments are relegated to a

separate Configuration Wizard window.

(3) The list of tools is typically very long—even in the right-click

menu where tools that are not applicable to the primary se-

lection are filtered out—making it hard to identify, invoke, and

configure a desired refactoring [Mealy et al. 2007; Murphy-Hill

et al. 2009; Vakilian et al. 2012].

(4) Even when a transformation has no configuration options or

when the defaults are acceptable—as is often the case [Murphy-

Hill et al. 2009]—the user must go through a separate Configu-

ration Wizard to make the change. The user must, furthermore,

navigate to another pane within the Configuration Wizard to

preview the changes before confirming them.

Our Approach. Our goal is to enable a workflow that enjoys the

benefits of both approaches. Specifically, programs ought to be
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represented in plain text for familiar and flexible editing by ex-

pert programmers, and the editing environment ought to provide

automated support for a variety of code transformations without

deviating from the text-editing workflow.

In this paper, we present a structure-aware editor, called Deuce,

that achieves these goals by augmenting a text editor with (i) click-

able widgets directly atop the program text that allow the user

to structurally select the unstructured text for subexpressions and

other relevant features of the program structure, and (ii) a context-

sensitive tool menu with previews based on the current selections.

Structural Code Selection. Rather than relying on keyboard-based

text-edits for selection, our editor draws direct manipulation wid-

gets to structurally select items in the code with a single mouse-click.

In particular, holding down the Shift key transitions the editor into

structural selection mode. In this mode, the editor draws a box

(which resembles a text-selection highlight) around the code item

below the current mouse position. Clicking the box selects the en-

tire text for that code item, eliminating any possibility for error and

reducing the time needed to select long, non-rectangular sequences

of lines. Furthermore, this interface naturally allows multiple se-

lection, even when items are far apart in the code. Structural text

selection helps address concerns (1) and (2) above.

Context-Sensitive Menu with Previews. Because structural selection

naturally supports multiple selection, we address concern (3) by

showing only tools for which all necessary arguments have been

selected, reducing the number of tools shown to the user compared

to a typical right-click menu. Hovering over a result description

previews the changes, and clicking a result chooses it. For tools with

few configuration options, we believe the preview menu provides a

lightweight way to consider multiple options while staying within

the normal editing workflow, helping to address concern (4).

The resulting workflow in Deuce is largely text-driven, but aug-

mented with automated support for code transformations (e.g. to

introduce local variables, rearrange definitions, and introduce func-

tion abstractions) that are tedious and error-prone (e.g. because of

typos, name collisions, and mismatched delimiters), allowing the

user to spend keystrokes on more creative and difficult tasks that

are harder to automate. The name Deuce reflects this streamlined

combination of text- and mouse-based editing.

Contributions. This paper makes the following contributions:

• We present the design of Deuce, a code editor equipped with

structural code selection, a lightweight directmanipulationmech-

anism that helps to identify and invoke program transforma-

tions while retaining the freedom and familiarity of traditional

text-based editing. Our design can be instantiated for different

programming languages and with different sets of program

transformations. (§3.1)

• We implement Deuce within Sketch-n-Sketch, a program-

ming environment for creating Scalable Vector Graphics (SVG)

images. Most of the functional program transformations in our

implementation are common to existing refactoring tools, but

two transformations—Move Definitions and Make Equal—are,

to the best of our knowledge, novel. (§3.2)

• To evaluate the utility of our user interface, we performed a

controlled user study with 21 participants. The results show

that, compared to a more traditional text selection-based refac-

toring interface, structural code selection is preferred and may

be faster for invoking transformations, particularly as users

gain experience with the tool. (§4)

Our implementation, videos of examples, and user study materials

are available at http://ravichugh.github.io/sketch-n-sketch/. In the

next section, we introduce Deuce with a few short examples.

2 OVERVIEW EXAMPLES

Example 1. De-

spite the inten-

tion of the fol-

lowing program,

the redSquare

definition uses

different values

for the width

and height of

the rectangle (the

fourth and fifth

arguments, respec-

tively, to the rect function). The user chooses Deuce code tools—

rather than text-edits—to correct this mistake.

The user presses the Shift key to enter structured editing mode,

and then hovers over and clicks the two constants 120 and 80

to select them; the selected code items are colored orange in the

screenshot above. Based on these selections, Deuce shows a pop-up

Code Tools menu with several potential transformations. TheMake

Equal by Copying tool would replace one of the constants with the

other, thus generating a square. However, such a program would

require two constants to be changed whenever a different size is

desired. Instead, the user wishes to invoke Make Equal with Single

Variable to introduce a new variable that will be used for both

arguments. Hovering over this menu item displays a second-level

menu (shown above) with tool-specific options, in this case, the

names of four suggested new variable names.

The user hovers over the second op-

tion, which shows a preview of the

transformed code (shown on the right).

The user clicks to choose the second op-

tion. Notice that the number 80 (rather than 120) was chosen to be

the value of the new variable w. Whereas the tool provided configu-

ration options for the variable name, it did not provide options for

which value to use; this choice was made by the implementor of

the Make Equal code tool, not by the Deuce user interface.

Example 2. Consider the following program that draws two circles

connected by a line. All design parameters and shapes have been or-

ganized within a single top-level connectedCircles definition. To

make the design more reusable, the user wants connectedCircles

to be a function that is abstracted over the positions of the two cir-

cles. The user hovers over and clicks the def keyword, and selects

the Create Function from Definition tool (shown in the screenshot).
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In response,Create Func-

tion rewrites the defi-

nition to be a function

(shown on the right),

and previous uses of

connectedCircles are

rewritten to appropriate function calls (not shown).

The order of arguments to the function match the order of defini-

tions in the previous program, but that order was unintuitive—the

coordinates of the start and end points were interleaved. To fix

this, as shown above, the user selects the last two arguments and

the target position (i.e. the space enclosed by a blue rectangular

selection widget) between the first two, and selects the Reorder

Arguments tool so that the order of arguments becomes startX,

startY, endX, and endY (not shown). Calls to connectedCircles

are, again, rewritten to match the new order (not shown).

Example 3. In the program below, the user would like to organize

all design parameters and shapes within the single logo definition.

The user hovers over and selects the five definitions on lines 2

through 9, as well as the space on line 13, and selects the Move

Definitions tool to move the definitions inside logo. The transfor-

mation manipulates indentation and delimiters appropriately in the

final code (not shown).

3 Deuce: DESIGN AND IMPLEMENTATION

In this section, we explain the design of Deuce in more detail. First,

we define a core language of programs where various structural

features can be selected. Then, we describe a user interface that

displays active transformations based on the set of structural se-

lections. Finally, we describe a set of general-purpose program

transformations that are provided in our current implementation.

Little. To make the discussion of our design concrete, we choose

to work with a small functional language called Little, defined in

Figure 1. A Little program is a sequence of top-level definitions,

the last of which is called main. Notice that all (sub)expressions,

(sub)patterns, definitions (both at the top-level and locally via let),

program ::= • (def x0 e0) • · · · • (def main e)

e ::= c | x | (λ p e) | (e1 e2) | [e1 |e2 ]

| ( let p e1 e2) | (case e (p1 e1) · · ·)
p ::= c | x | [] | [p1 |p2 ]

Expressions e ::= • e • Patterns p ::= • p •

Figure 1: Syntax of Little. The orange boxes and blue dots

identify features for structural selection.

EditorState = { code: Program, selections: Set Selection }

ActiveState = Active | NotYetActive | Inactive

Options = NoOptions | StringOption String

Result = { description: String, code: Program }

CodeTool =

{ name : String

, requirements : String

, active : EditorState -> ActiveState

, run : (EditorState, Options) -> List Result }

Figure 2: Code tool interface.

and branches of case expressions are surrounded in the abstract

syntax by orange boxes; these denote code items that will be exposed

for selection and deselection in the user interface. In addition, there

are target positions, denoted by blue dots, before and after every

definition, expression, and pattern in the program. Target positions

are “abstract whitespace” between items in the abstract syntax tree,

which will also be exposed for selection.

Code Tool Interface. Each code tool must implement the interface

in Figure 2. A tool has access to the EditorState, which contains a

Program and the Set of structural Selections within it. Based on

the EditorState, the active predicate specifies whether the tool is

Active (ready to run and produce Result options), NotYetActive

(could be Active if given more valid selections), or Inactive (in-

valid based on the selections). For example, Move Definitions is

NotYetActive if the user has selected one or more definitions but

no target position. When invoked via run, a tool has access to

the EditorState and configuration Options, namely, an optional

String. This strategy supports the ubiquitous Rename tool. A more

full-featured interface may allow a more general set of configu-

ration parameters; the challenge would be to expose them using

a lightweight user interface. In our implementation, all transfor-

mations besides Rename require NoOptions. Each Result is a new

Program and a description of the changes.

This API between the user interface and code tool implementa-

tions is shallow, in the sense that a code tool implementation can

do whatever it wants with the selection information. A framework

for defining notions of transformation correctness would be a use-

ful line of work, but is beyond the scope of this paper. Currently,

code tools must be implemented inside the Deuce implementation.

Designing a domain-specific language for writing transformations

would be useful, but is also beyond the scope of this paper.
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Figure 3: Example target positions.

Implementation in Sketch-n-Sketch. We have chosen to im-

plement our design within Sketch-n-Sketch [Chugh et al. 2016;

Hempel and Chugh 2016], an interactive programming system for

generating SVG images. Whereas Sketch-n-Sketch provides ca-

pabilities for directly manipulating the output of a program, Deuce

provides capabilities for directly manipulating the code itself.

Direct code manipulation is particularly useful for a system like

Sketch-n-Sketch for a couple reasons. First, while the existing

output-directed synthesis features in Sketch-n-Sketch attempt to

generate program updates that are readable and which maintain

stylistic choices in the existing code, the generated code often re-

quires subsequent edits, e.g. to choose more meaningful names, to

rearrange definitions, and to override choices made automatically

by heuristics; Deuce aims to provide an intuitive and efficient inter-

face for performing such tasks. Furthermore, by allowing users to

interactively manipulate both code and output, we provide another

step towards the goal of direct manipulation programming systems

identified by Chugh et al. [2016]. These two capabilities—direct

manipulation of code and output—are complementary.

Sketch-n-Sketch is written in Elm (http://elm-lang.org/), a lan-

guage in which programs are compiled to JavaScript and run in the

browser. The project uses the Ace text editor (https://ace.c9.io/) for

manipulating Little programs. (The second reason for the name

Deuce is that it extends Ace.) We extended Sketch-n-Sketch to

implement Deuce; our changes constitute approximately 9,000 lines

of Elm and JavaScript code. The new version (v0.6.2) is available at

http://ravichugh.github.io/sketch-n-sketch/.

3.1 User Interface

The goals of our user interface are, first, to expose structural code

selection widgets—corresponding to the code items and target posi-

tions in a Little program—and, second, to display an interactive

menu of active transformations based on the set of selections.

So that the additional features provided by Deuce do not in-

trude on the text-editing workflow, we display structural selection

widgets when hovering over the code box only when the user is

holding down the Shift key. Hitting the Escape key at any time

deselects all widgets and clears any menus, returning the editor to

text-editing mode. This allows the user to quickly toggle between

editing modes during sustained periods in either mode. When not

using the Shift modifier key, the editor is a standard, monospace

code editor with familiar, unrestricted access to general-purpose

text-editing features.

3.1.1 Structural Code Selection. The primary innovation in our

design is the ability to structurally select concrete source text cor-

responding to code items and target positions from the abstract

syntax tree of a program.

Code Items. Our current implementation draws an invisible “bound-

ing polygon” around the source text of each expression, which

tightly wraps the expression even when stretched across multiple

lines. These polygons serve as mouse hover regions for selection,

with the polygons of larger expressions drawn behind the (smaller)

polygons for the subexpressions such that all polygons for child ex-

pressions partially occlude those of their parents. Because complex

expressions in Little are fully parenthesized, it is always unam-

biguous exactly where to start and end each polygon, and there are

always character positions that can be used to select an arbitrary

subexpression in the tree. Similarly, we create bounding polygons

for all patterns and definitions.

When hovering over an invisible selection polygon, Deuce colors

the polygon to indicate that it has become the focus. Its transparency

and style is designed to resemble what might otherwise be expected

for text selection (cf. the screenshots in §2). Clicking a polygon

selects the code item, making it visible even after hovering away.

Hovering the mouse back to the polygon and clicking it again

deselects the code item.

Target Positions. The user interface also draws polygons for the

whitespace between code items for selecting target positions. Fig-

ure 3 (left) shows how our implementation draws whitespace poly-

gons slightly to the left of the beginning of a line, and until the end

of a line even if there are no characters on that line. Figure 3 (center)

shows whitespace polygons with non-zero width even when there

are no whitespace characters between adjacent code items.

Another concern is that many target positions in the abstract

syntax from Figure 1 describe the same space between code items.

For example, the expression [• 50 • • 70 •] on line 3 of Figure 3

contains both an after-50 and before-70 position. Because such

target positions between adjacent items are redundant, our imple-

mentation draws only one whitespace polygon. (This polygon is

not selected in any of the screenshots.)

A more interesting case is for the code items (def •p • • e •)
and (let •p • • e • · · ·); there is both an after-p target and a before-
e target. To allocate the whitespace between p and e, we take the

following approach. The space up to the first newline, if any, is

dedicated to after-p; the remaining is for before-e. If there is no

newline, then we do not expose any selection widget for before-e.

For comparison, notice how the whitespace from the end of line 2

to beginning of line 3 in Figure 3 (right) is split into two polygons,

but the whitespace from the end of line 3 to the beginning of line 4

in the Figure 3 (left) is not. In other settings, it may be worthwhile

to consider alternative approaches to the design decisions above.

3.1.2 Displaying Active Code Tools. Several program transforma-

tions may be Active based on the items and targets that are se-

lected. We design and implement a lightweight user interface for

identifying, invoking, and configuring Active transformations.

Pop-up Panel. When the user has entered structured editing mode

(by pressing Shift) and selected at least one item, we automatically
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display amenu near the selected items. The user has already pressed

a key to enter this mode, so our design does not require a right-click

to display the menu. The user can drag the pop-up panel if it is

obstructing relevant code. We often manually re-positioned pop-up

menus to make the screenshots in §2 fit better in the paper.

Hover Previews. Each tool in the menu has a list of Results, which

appear in a second-level menu when hovering the tool name. Each

second-level menu item displays the description of the change,

and hovering over it previews the new code in the editor. Clicking

the item confirms the choice and clears all Deuce selections. When

there are few Results (i.e. configuration options), this preview

menu provides a quick way to consider the options, rather than

going through a separate Configuration Wizard. For tools that

require multiple and non-trivial configurations, however, the editor

could fall back on separate, tool-specific Configuration Wizards;

our current implementation of Deuce does not support this.

3.2 Program Transformations

We have implemented a variety of pro-

gram transformations, shown on the right.

While we believe these transformations

form a useful set of basic tools for com-

mon programming tasks, we do not ar-

gue that these constitute a necessary or

sufficient set. One benefit of our design

is that different sets of transformations—

such as refactorings for class-based lan-

guages [Fowler 1999], refactorings for

functional languages [Thompson and Li

2013], transformations that selectively

change program behavior [Reichenbach

et al. 2009], and task-specific transforma-

tions that do not have common, recogniz-

able names [Steimann and von Pilgrim

2012]—can be incorporated and displayed

to the user within our interface.

We limit our discussion below to transformations that are not

implemented in existing refactoring tools. The Supplementary Ap-

pendices [Hempel et al. 2018] describe other transformations, but

these details are not necessary to understand the rest of the paper.

Make Equal with Single Variable. When multiple constants and

an optional target position are selected, theMake Equal with Single

Variable transformation introduces a new variable, bound to one of

the constants, and replaces all the constants with the new variable.

This has the effect of changing the program to make each of these

values equal. The transformation attempts to suggest meaningful

names, based on how the selected expressions appear in the pro-

gram. For Example 1 from §2, because the numbers 120 and 80

are passed as the fourth and fifth arguments, respectively, to the

function (def rect (\(fill x y w h) ...)), the suggested

names include w and h. The user is asked to choose a name. The

value itself (in this case, 120 or 80) is not as important—the inten-

tion is that the values vary at once by a single change—so, to keep

the number of Results small, the transformation does not ask the

user to choose which value to use for the variable.

Move Definitions. Because of nested scopes and simultaneous

bindings (i.e. tuples), there are many stylistic choices about variable

definitions when programming in functional languages. The Move

Definitions transformation takes a set of selected definitions and

a single target position, and attempts to move the definitions to

the target position. If the target position is before an expression,

a new let-binding is added to surround the target. Whitespace is

added or removed to match the indentation of the target scope. If

the target position already defines a list pattern, then the selected

definitions are inserted into the list. If the target position defines

a single variable, then a list pattern is created. In cases where the

intended transformation would capture variable uses or move def-

initions above their dependencies (errors that are easy to make

when using text-edits alone), the transformation makes secondary

edits (alpha-renaming variables and moving dependencies) to the

program to avoid these issues. Our implementation ofMove Defini-

tions also provides options for whether or not to collapse multiple

definitions into a single tuple, and also provides support for rewrit-

ing arithmetic expression definitions as an alternative way to deal

with dependency inversion issues.

4 USER STUDY

We designed and implemented Deuce with the goal to incorporate

structured editing within a text-based program editor. In this sec-

tion, we describe a user study designed to measure the degree to

which we were successful.

Besides the two novel mechanisms in our user interface design—

structural code selection and context-sensitive previewmenus—that

wewish to evaluate, there are several additional factors at play. First,

many users may not have extensive experience with functional

programming languages, especially the custom Little language

supported in our implementation. Second, our implementation pro-

vides some familiar transformations but some—particularly those

involving target positions—are not. Furthermore, some users may

prefer to use text-editing rather than structured edits, even when

the latter can be used. These factors make it hard to perform a

direct comparison between our implementation of Deuce and an

existing system, such as Eclipse.

To mitigate these factors, we designed a study that compared

Deuce with a “baseline” version of the system, with features de-

signed to emulate the traditional text-select-based interface de-

scribed in § 1. We then designed tasks, to be completed in both

versions and without text-edits, to measure the effect of the new

Deuce user interface features compared to the baseline ones. Below,

we describe the different configurations of our system, our study

procedures, and our results.

4.1 System Configurations

Recall that tools may be Active or NotYetActive based on one or

more selected items and target positions (Figure 2).

Traditional Mode (“Text-Select Mode”). To form the traditional

mode of the tool, which we called Text-Select Mode in the user

study materials, we implemented four interactions separate from

the workflow described in §2 and §3.1 to invoke code tools.
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(A) Code Tools Menu. The editor displays a Code Tools menu at the

top of the window with a list of all transformations available in

the system; this menu is akin to the Source and Refactor menus

in Eclipse. The user selects a tool from this menu without first

selecting anything in the program. Then, the editor displays a

Tool Configuration Panel that displays tool-specific instructions.

Tool Configuration Panels, which appear in all four interactions of

Traditional Mode, are discussed below.

(B) Text-Select Single Argument + Code Tools Menu. This interaction

is like Interaction A, except that the user first text-selects an item

or target in the code. Like Eclipse, text-selecting requires the entire

item to be selected, possibly with trailing or leading whitespace.

Our implementation provides more generous text-selection mech-

anisms (e.g. largest containing expression, smallest surrounding

expression), but the stricter version is used in the study because it is

more similar to existing approaches [Murphy-Hill and Black 2008].

Also like Eclipse, all tools are displayed and enabled in the Code

Tools menu, even if the tool is Inactive based on the selection.

(C) Text-Select Single Argument + Right-Click Menu. After first text-

selecting an item, as in Interaction B, the user right-clicks to trig-

ger a pop-up menu that displays only plausible tools (Active or

NotYetActive). A similar workflow is provided by Eclipse.

Returning to Example 1 from § 2,

the screenshot on the right shows the

right-click menu after text-selecting the

120 constant. By comparison, notice

how this right-click menu displays more

tools (NotYetActive tools in addition to

Active ones). After the text selection is

made, the editor draws an orange box (as

with Deuce widgets) to identify the se-

lection.

(D) Cursor-Select Single Argument + Right-Click Menu. For atomic

code items (i.e. constants and variables), the user implicitly selects

the item by right-clicking on the token (rather than text-selecting it)

to trigger the right-click menu, as in Interaction C. Again, a similar

workflow is provided by Eclipse.

Tool Configuration Panels. Each of the

four interactions above trigger Tool

Configuration Panels, which display

the requirements string that explains

how to invoke the tool. The user selects

any additional arguments by hovering

over and clicking structural selection

widgets. That is, structural selection

widgets are not accessible to make the

primary selection, but they are used to

make all remaining selections in a Tool

Configuration Panel. The screenshot

above shows the Configuration Panel after text-selecting 120, as

above, and then selecting 80 and a target position using structural

selection. Because the tool requirements are satisfied, the panel dis-

plays the list of Results, each of which can be hovered to preview

the change before selecting it.

Deuce Mode (“Box-Select Mode”). This configuration, called Box-

Select Mode in the user study materials, isolates the new Deuce

features. To review, the user holds down the Shift key, then hovers

over and clicks one or more structural code selection widgets. When

at least one widget is selected, the pop-up preview menu displays

the list of Active tools.

There is no Code Tools menu at the top of the editor in this mode,

even though the “full” version of our tool (not used by participants

in the study) does; the list of tool names and descriptions in Tool

Configuration Panels (which are not accessible in Deuce Mode) can

help understand unfamiliar transformations.

Combined Mode. Our last configuration combines Traditional and

Deuce Modes, with all interactions described above.

4.2 Questions and Procedures

We sought to address several questions:

• Is either mode more effective for (a) completing tasks, (b) rapid

editing, or (c) achieving more with fewer transforms?

• Is either mode preferred by users? In which cases?

To answer these questions, we designed the following IRB-approved,

controlled user study with 21 undergraduate and graduate students

from the University of Chicago. We recruited users by sending

emails to public mailing lists, offering a monetary incentive of

$50 for participating in the two-hour study. Prior experience with

functional programming or Sketch-n-Sketch was not required.

Each user attended an individual session and was given the option

to use the laptop and mouse provided by us or their own devices.

The primary components of the study included a tutorial portion

followed by a tasks portion. We configured a pared-down version of

the system that turned off all Sketch-n-Sketch features unrelated

to the interactions being studied. The tutorial and tasks were set

up as a self-guided progression of steps through the tool, to be

completed at the user’s own pace. In the description of the tutorial

and tasks below, all random choices were made independently of

other choices, as well as across users.

Our system logged user events to analyze the tutorial and tasks.

We also recorded video of the users performing the tasks, for manual

inspection in situations where the log information was insufficient

or more difficult to process. Besides helping to get started and

correct minor issues unrelated to Deuce, the user study proctor did

not answer any questions about Deuce or the tasks. To wrap up,

users answered questions about their programming background

and experience using Deuce in an exit survey.

Tutorial. The first part of the tutorial introduced ordinary text-

based programming in Little, emphasizing that the syntax would

not be too important for subsequent tasks.

The majority of the tutorial introduced the code tools using both

Traditional and Deuce Modes. The first tool introduced—Rename

Variable, a familiar tool to many—was explained using all five in-

teraction modes. But because the four interactions in Traditional

Mode are largely similar, all subsequent tools introduced in the tu-

torial had only one set of instructions for Traditional Mode. For all

tools introduced, a random choice was used to determine whether

to explain Traditional or Deuce Mode first. In total, 10 of the 22

code tools in our implementation were demonstrated in the tutorial.
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Table 1: Overview of the four head-to-head and two open-ended tasks. #LOC is non-blank lines of code in the starting program.

Name #LOC #Transforms Example Tool Sequence (with minimum number of transforms required)

One Rectangle 9 3 Swap Expressions; Move Definition; Swap Definitions

Two Circles 11 2 Create Function from Definition; Reorder Arguments

Three Rectangles 11 2 Creating Function by Merging Definitions; Rename

Four Rings 7 4 Remove Argument; Rename; Move Definition; Add Arguments

Four Squares 9 7 Create Function by Merging Definitions; Create Function from Arguments; Rename (5x)

Lambda Icon 10 8 Make Equal with Single Variable (6x); Introduce Variable; Rename

To give a flavor of the tutorial, Example 1 in §2 is adapted from

the steps that introduced the Make Equal tools. In addition to tool-

specific tutorial steps, we also dedicated a step for more practice

with target positions, independent of a specific tool, because the

notion of target positions was likely to be unfamiliar.

Tasks. After the tutorial, users worked on six tasks, each a different

program and a list of one or more edits to perform using code tools.

For some tasks, there were multiple different sequences of code

tool invocations that could lead to the desired result. The starting

programs ranged from 7 to 11 lines of code and required between

2 and 8 tool invocations (at minimum) to finish the tasks. Table 1

outlines the tasks. The Two Circles task was presented as Example 2

in §2. Extended task descriptions can be found in the Supplementary

Appendices [Hempel et al. 2018].

Before every task, the participant was given a read-only reading

period to understand the program before seeing the list of edits

to perform. To emulate a real-world scenario where the program-

mer knows what to accomplish but may not quite remember all

the steps, the task directions were written in a more natural style

without direct reference to tool names—for example, “move the

ring definition inside target” instead of “invoke Move Definition

on the ring definition with a target position inside target.”

Each of the first four tasks (“head-to-head tasks”) was performed

twice, once each in Traditional and Deuce Modes, resulting in

eight trials. The first four trials comprised each of the four tasks, in

random order and with one of the modes randomly chosen per trial.

For the next four trials, the order of tasks was, again, randomized,

each using the mode not chosen for the task in the first round.

After these eight trials, the user performed each of the last two

tasks (“open-ended tasks”) once using the Combined Mode—both

Traditional and Deuce Modes were available for use, to mix-and-

match the two modes however they saw fit.

For each task, comments showed what the desired final code

should look like, sometimes modulo minor whitespace differences.

The editor provided an indicator about whether the task was com-

pleted, giving the user the option to Give Up at any point if needed.

There was also a maximum time limit of six and twelve minutes

for each head-to-head and open-ended task, respectively, with no

indication about the time limit until and unless the user reached

the two and four minutes remaining mark, respectively.

4.3 Results

Participants reported between 2 and 10 years of programming ex-

perience (mean: 5.1), of which between 0 and 3 years involved func-

tional programming (mean: 0.76). 10 participants (48%) reported

no prior functional programming experience. 8 participants re-

ported using tools that supported automated refactoring (Eclipse,

IntelliJ, and PyCharm all received multiple mentions). 4 partici-

pants reported some prior exposure to previous versions of the

Sketch-n-Sketch project, but none reported knowledge of the

code tools presented in the study.

For the study itself, 8 users brought their own laptop, the remain-

ing 13 used ours. 15 participants used a mouse, and 6 relied on their

laptop’s trackpad. Each session took a mean of 1hr 44min (range:

1h 11m – 2h 27m). Users spent between 23 and 66 minutes on the

tutorial (mean: 41) and 20 and 65 minutes on the tasks (mean: 44).

The remaining time was spent on introductory remarks and the

exit survey. All users attempted all tasks. Two trials were discarded

because of tool malfunction, for a final total of 166 head-to-head

trials and 42 open-ended tasks suitable for analysis.

The tasks proved moderately difficult. On average, each partici-

pant successfully completed 71% of the trials and open-ended tasks

within the time limits, with 3 users completing them all and 1 user

failing to complete any. Figure 4 shows completion rates by task.

The One Rectangle and Lambda tasks had particularly low comple-

tion rates. Based on videos of failed attempts, many users struggled

with choosing appropriate tools—e.g. many chose Introduce Vari-

ables rather than Make Equal, and some chose Inline rather than

Move Definitions in an attempt to create a tuple definition. The tuto-

rial was not sufficient for everyone to remember and understand all

the tools needed for the tasks. The task descriptions may have also

presented obstacles—e.g. for Lambda, the phrase “Define and use...”,

along with (def [x y w h] ...) in the final code, may have led

some to use Introduce Variables, which would then require several

roundabout transformations to complete the task. We believe these

difficulties are largely independent of the user interface features.

We now address each of the research questions in turn.

Is either mode more effective for completing tasks?. Figure 5

breaks down completion rates for head-to-head tasks by mode. Be-

cause each was attempted twice, to assess possible learning effects

from already completing a task in the other mode, Figure 5 also

differentiates between the user’s first or second encounter with

each task. Visually, the data suggest that on the first encounter

with a task, Traditional Mode may better facilitate completion, and

is also a better teacher for the subsequent encounter with Deuce

Mode. In contrast, a first encounter with Deuce Mode may be less

helpful for the second encounter with Traditional Mode.

To control for learning effects, a mixed effects logistic regres-

sion model [Gelman and Hill 2007] was fit with lme4 [Bates et al.

2015] to predict task completion probability based upon fixed effect
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Figure 4: Task completion rates pooled over both modes.
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Figure 5: Head-to-head task completion rates by mode and

by subject’s first/second encounter with task. Overlaid lines

indicated pooled completion rates.

predictors for the mode (coded as 0 or 1), the trial number (1-8),

whether the trial was the second encounter with the task (0 or 1),

whether the participant used a mouse (0 or 1), whether the partici-

pant used their own computer (0 or 1), and the interaction of mode

with the second encounter (0, or 1 when Deuce Mode and a second

encounter). To model differences in user skill and task difficulty, a

random effect was added for each participant as well as each task,

and a random interaction was added to model differences in the

second encounter difficulty per task. Reported p-values are based

on Wald Z-statistics.

In the fit model, the coefficient for mode was on the edge of

significance (p=0.057), indicating that Traditional Mode did better

facilitate task completion on the first encounter with a task. Given

this, Deuce Mode performed better than expected on the second

encounter (interaction term p=0.036), but not enough to confidently

say that Deuce Mode was absolutely better than Traditional Mode

for the second encounter (p=0.17). No other fixed effect coefficients

approached significance.

Deuce Mode therefore seems to present a learning curve, but

may be just as effective as Traditional Mode once that learning

curve is overcome. This interpretation accords with the surveys: 5

participants wrote that Traditional Mode might be better for learn-

ing, and 4 participants—including 3 of the previous 5—said Deuce

Mode was better when they knew the desired transformation. How-

ever, the data may be alternatively explained if Deuce Mode on the

first encounter is a poor teacher, actively misleading users on the

second encounter with Traditional Mode.

Is either mode more effective for rapid editing? Among trials

successfully completed, the duration of each trial was measured

from the start of configuration of the first refactoring to the end of

the final refactoring. The distribution of these timings is presented

in Figure 6, scaled relative to the mean duration for each task.
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Figure 6: Head-to-head task durations for successfully com-

pleted trials, scaled relative to the mean time per task.

Again, to tease out if any of these differences are significant,

from the same predictors described above two linear mixed effects

models were fit to predict (1) trial duration and (2) the logarithm

of trial duration (i.e. considering effects to be multiplicative rather

than additive). Percentile bootstrap p-values for the fixed effect

coefficients were calculated from 10,000 parametric simulate-refit

samples.1 For the first encounter with a task, Traditional Mode

was insignificantly faster (by 13 seconds, p=0.44; or 9.2%, p=0.52).

However, Deuce Mode was on average 25 seconds (p=0.13) or 36%

(p<0.01) faster for the second encounter with a task, suggesting

that Deuce Mode may be faster once users become familiar with

the available tools. Most of the gain comes from less time spent

in configuration—after discounting all idle thinking time between

configurations, the model still reveals an 18 second difference.

Is either mode more effective for achieving more with fewer

transforms? To determine if either mode facilitated more efficient

use of interactions, the same mixed effects model was fit to predict

the number of refactorings invoked during each successful trial, as

well as the number of Undos. On the first encounter with a task,

Traditional Mode accounted for an average of 2.0 fewer refactorings

(p<0.01) and 2.1 fewer Undos (p<0.01), but on the second encounter

no significant difference in number of refactorings or Undos was

indicated. As a second encounter with Deuce Mode is faster than

Traditional Mode, the speed gain thus appears to be explained by

faster invocations rather than fewer invocations.

Is either mode preferred by users? In which cases? The two fi-

nal open-ended tasks allowed participants to mix-and-match the

two modes as they pleased. As shown in Figure 7, on both tasks the

overwhelming number of users performed a greater share of refac-

torings using Deuce Mode. We believe a main advantage of Deuce

Mode is that it simplifies the configuration of refactorings that re-

quire multiple arguments, as the user may select all the arguments

together before choosing a transformation from a short menu. In

Traditional Mode, the workflow is stuttered: the user must select a

single argument, right-click to choose a transformation, then select

the remaining arguments. However, for a refactoring requiring only

a single argument, Traditional Mode is more streamlined: a user

may simply select the desired transformation immediately after

right-clicking on the first argument. Thus, for single-argument

refactorings, Deuce Mode’s advantages may be limited. A break-

down of mode usage by popular tools (Figure 8) lends support to

1See https://www.rdocumentation.org/packages/lme4/versions/1.1-13/topics/bootMer
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Deuce Modes as measured by the ratio of refactorings per-

formed by the user in each mode on the open-ended tasks.

Far left represents all Traditional Mode refactorings; far-

right indicates all Deuce Mode refactorings. The 95% con-

fidence interval for the mean preference across all users is

indicated (via percentile bootstrapping, 10,000 samples).
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Figure 8: Mode usage for tools used by at least half of partici-

pants on the open-ended tasks. Deuce mode is preferred for

most tools. Stars indicate differences significant at the 95%

level (via percentile bootstrapping, 10,000 samples).

this hypothesis. For the most commonly used tool, Rename, which

always takes only a single argument, participants used Traditional

and Deuce Modes with roughly even frequency. Most other tools

showed strong preferences towards Deuce Mode, with the notable

exception of Create Function by Merging Definitions. Because the

Four Squares task required invoking this tool with four expressions,

according to the hypothesis, users should prefer Deuce Mode. The

videos revealed that several users were unable to discover how

to structurally select a function call, which required hovering on

the open parenthesis (not demonstrated in the tutorial). Several of

these users were, however, able to invoke the tool by text-selecting

a function call or by starting from the full Code Tools menu.

Subjectively, the concluding survey asked whether Deuce or Tra-

ditional Mode worked better for each head-to-head task, measured

on a 5-point scale from “Text-Select Mode worked much better”

to “Box-Select Mode worked much better”. For each participant, a

random choice determined which mode appeared at each end of the

scale. As shown in Figure 9, on average a similar modest preference

for Deuce Mode was expressed for each task.
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Figure 9: Surveyed subjective preference for Traditional vs.

Deuce Modes for the head-to-head tasks. The 95% confi-

dence interval for the mean preference across all users is

indicated (via percentile bootstrapping, 10,000 samples).

On the free-response portion of the survey, several explanations

were given for this preference for DeuceMode. 3 participants appre-

ciated the ability to select multiple arguments; 2 other participants

appreciated selecting all arguments before selecting a tool; 1 other

participant appreciated the smaller menu of refactorings; and 1

other participant appreciated the ease of starting a refactoring by

clicking code objects rather than having to create a text selection.

Altogether, users demonstrated a strong objective and modest

subjective preference for Deuce over Traditional Mode, suggesting

that Deuce accomplishes its goal to provide a more human-friendly

interface to identify, configure, and invoke refactorings.

Limitations. There are several threats to the validity of our ex-

perimental setup. One is that our emulation of traditional features

may have been less effective than those features in existing tools.

Another is that the participants may have felt compelled to use

Deuce Mode (which could likely have been deduced to be more

novel than Traditional Mode) more during the open-ended tasks—

and pronounce a preference for it in the survey—because the par-

ticipants were drawn from the same academic community as the

authors. Another is that participants used the tool in heterogeneous

environments—different computers and browsers, configured with

different screen sizes and mouse settings. Performance on the tasks

may have also been affected by the presence of the user study

proctor and video recording device. According to self-reported as-

sessments, participants were relatively unfamiliar with functional

programming and with refactoring tools, so the results may differ

for users with more extensive experience. Finally, our results were

obtained on small programs and tasks in a prototype language.

Future Improvements. There are opportunities to improve our

implementation of Deuce. First, to reduce the learning curve, it

would be worth adding more explanatory features (e.g. in a tutorial,

or within the tool when the user selects certain kinds of items for

the first time), particularly for unfamiliar transformations (e.g. Move

Definitions) and for unfamiliar user interface features (i.e. target

positions). Enabling the full Code Tools menumay also help because

of the descriptions of requirements in the Tool Configuration Panels

(cf. the “Deuce Mode” discussion). Also, to allow easy corrections

of misconfigured refactorings, it would help if Undo restored the

previous selection state rather than just the previous version of the

code; we have since implemented this feature.
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5 RELATEDWORK

We describe the most closely related ideas in structured editing and

refactoring. Ko and Myers [2006], Lee et al. [2013], and Omar et al.

[2017] provide more thorough introductions.

5.1 User Interfaces for Structured Editing

Compared to traditional text-selection and menus, several alterna-

tive user interface features have been proposed to integrate struc-

tured editing more seamlessly within the text-editing workflow.

Text Selection. Murphy-Hill and Black [2008] identify that text

selection-based refactoring is prone to error, particularly for state-

ments that span multiple lines and that have irregular formatting.

They propose two prototype user interface mechanisms, called Se-

lection Assist and Box View, to help. With Selection Assist, the user

positions the cursor at the start of a statement, and the entire state-

ment is highlighted green to show what must be selected (using

normal text-selection). With Box View, the editor draws a separate

panel (next to the code editor) that shows the tree structure of

the program with nested boxes. When selecting text in the editor,

the nested boxes are colored according to which code items are

completely selected. Similarly, the user can select a nested box in

the Box View to select the corresponding text in the code.

In contrast, our structural selection polygons are drawn directly

atop the code, at once helping to identify (like Box View) and select

(like Selection Assist), which aims to mitigate the context switching

overhead of Box View identified by Murphy-Hill and Black [2008].

Drag-and-DropRefactoring. Lee et al. [2013] propose a tool called

DNDRefactoring that eliminates the use of menus altogether.

They demonstrate how many common Eclipse refactorings can

be unambiguously invoked with a drag-and-drop gesture without

the need for any additional configuration. This is a compelling

workflow for situations in which the user can (a) readily identify

an intended refactoring based on a preconceived notion (e.g. its

name), (b) unambiguously invoke the intended refactoring by a

single-source, single-target drag-and-drop gesture, and (c) accept

the default configuration of the refactoring. It would be useful to

add drag-and-drop gestures to Deuce for transformations that sat-

isfy these three conditions. However, our user interface supports

situations when one or more of these three conditions fails to hold.

Hybrid Editors. Compared to “fully” structured editors, several

hybrid editor approaches augment text-based programs with addi-

tional information. Barista [Ko and Myers 2006] is a hybrid Java

editor where structure views can be implemented to present alter-

nate representations of structural items instead of text. For example,

an arithmetic expression may be rendered with mathematical sym-

bols, a method may be accompanied by interactive documentation

with input-output examples, and structures may be selectively col-

lapsed, expanded, or zoomed. Omar et al. [2012] introduce a similar

notion to structure views, called palettes, where custom displays

can be incorporated based on the type of a subexpression. For

example, a color palette can provide visual previews of different

candidate color values, and a regular expression palette can show

input-output examples for different candidate regular expressions.

In Greenfoot [Brown et al. 2016], program text is separated into

structural regions called frames, which are created and manipulated

with text- and mouse-based operations that are orthogonal to the

text-edits within a frame. Code Bubbles [Bragdon et al. 2010] allows

text fragments to be organized into working sets, which are collec-

tions of code, documentation, and notes from multiple files that

can be organized in a flexible way. Outside of the views, palettes,

frames, and working sets in the above hybrid editors, the user has

access to normal text-editing tools.

Our approach is complementary to all of the above: in places

where code fragments—regardless of their granularity and their

relationship to alternative or additional pieces of information—are

represented in plain text, we aim for a lightweight user interface to

structurally manipulate it.

Refactoring with Synthesis. In contrast to direct manipulation

in DNDRefactoring and Deuce, Raychev et al. [2013] propose

a workflow where the user starts a refactoring with text-edits—

providing some of the changes after the refactoring—and then asks

the tool to synthesize a sequence of refactorings that complete the

task. This text-based interface and the mouse-based interfaces of

DNDRefactoring and Deuce are complementary.

5.2 Program Transformations

Automated support for refactoring [Fowler 1999; Griswold 1991;

Roberts et al. 1997] has been aimed primarily at programs written

in class-based, object-oriented languages.

Refactoring for Functional Languages. HaRe [Brown 2008; Li

2006; Thompson and Li 2013] is a refactoring tool for functional

languages, such as Haskell, where features—including first-class

functions (i.e. lambdas), local bindings, tuples, algebraic datatypes,

and type polymorphism—lead to editing tasks that are different

from those supported in most typical refactoring tools for object-

oriented programs. Our user interface could be incorporated by

HaRe to expose the supported transformations with lightweight

direct manipulation. HaRe provides a larger catalog of transfor-

mations than our current implementation of Deuce. However, the

details of ourMove Definitions andMake Equal transformations are,

to the best of our knowledge, not found in existing tools.

6 CONCLUSION

Based on our experience and the results of our user study, we be-

lieve Deuce represents a proof-of-concept for how to achieve a

lightweight, integrated combination of text- and structured editing.

In future work, our design may be adapted and implemented for full-

featured programming languages and development environments,

incorporating additional well-known transformations (e.g. Fowler

[1999]; Thompson and Li [2013]). Additional direct code manipula-

tion gestures, as well as incremental parsing (e.g. the algorithm of

Wagner and Graham [1998] used by Barista [Ko and Myers 2006]),

could further help streamline, and augment, support for structured

editing within an unrestricted text-editing workflow.
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