
 1 type Exp = Add Exp Exp | ... | Div Exp Exp
 2
 3 eval : Exp -> Int
 4 eval e =
 5 case e of
 6 Add left right ->
 7 eval left + eval right
 8 ...
 9 Div numerator 0 ->
10 raise DivisionByZero

How Do Statically-Typed Functional
Programmers Author Code?

I kind of understand, maybe, what I’ve got, so I can do some
bottom-up exploration.

And I pretty much know where I want to be (which is the type
signatures), and it allows me to do some top-down programming.

And when it’s not clear to me how to connect the two, and … I’m not
feeling super productive or I feel stuck trying to think from one end,

I just switch to the other to try to glean some more context.

Understudied AudienceEvidence-Based Tools Eased Community Onboarding

Mental Models and Expressing Intent
No matter the style of programming, they have diverse mental
models and express their intent in many ways, not all of which
produce valid code.

④

Diversity of Mental Models Reasoning About Code Essence Signaling and Executing Intent

Hierarchical and Opportunistic Programming
When faced with difficult or unknown problem domain, they
complement this systematic style of programming with an
exploratory one, the details of which are highly varied.

③

Opportunistic Strategies Interplay of Hierarchical and Opportunistic Programming

Focusing Techniques
They leverage types to help themselves focus by relying on
the compiler as an assistant and using these types to help
decompose their tasks.

②

Relying on Compiler as Assistant Using Types to Reduce Context

Type Construction
They start by iteratively constructing types to model their
problem domain and encode design decisions.

①

Feeling Odd When Types Are Amiss Iteratively Constructing Types and Expressions

Why care?

Justin Lubin

ⓐ 1 let
2 hardBit =
3 Debug.todo “”
4 in
5 « body »

ⓑ 1 let
2 hardBit =
3 Debug.todo “”
4 in
5 « body, using hardBit »

ⓒ 1 let
2 hardBit : Int -> Maybe Int
3 hardBit =
4 Debug.todo “”
5 in
6 « body, using hardBit »

ⓓ 1 let
2 hardBit : Int -> Maybe Int
3 hardBit =
4 « implementation of hardBit »
5 in
6 « body, using hardBit »

1 -- Set (Position, Position)
2 -- Set (Position, Tile, Maybe Color, Position)
3 -- Board, Set (Maybe Color, Position)
4 -- Board

