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Abstract

This thesis is a companion document to the publication Program Sketching with Live Bidirec-
tional Evaluation appearing in The International Conference on Functional Programming
(ICFP) 2020 by the author of this thesis (Justin Lubin), Nick Collins, Cyrus Omar, and Ravi
Chugh. In this thesis, I present the details of the implementation of Smyth (the program
synthesizer introduced in Program Sketching with Live Bidirectional Evaluation), including
critical performance optimizations, an overview of its architecture, and important future
work still to be done.
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Figure 1: Smyth in action. Left: the Smyth help screen. Center: “forging” (synthesizing a
solution to) an empty sketch. Right: forging a sketch that includes the base case.

1 Introduction

This thesis presents the details of my implementation of Smyth, the system introduced
in the publication Program Sketching with Live Bidirectional Evaluation appearing in The
International Conference on Functional Programming (ICFP) 2020 by me (Justin Lubin),
Nick Collins, Cyrus Omar, and Ravi Chugh [1].

Smyth is a program synthesizer that fills in “holes” in a program in a typed, functional
language (approximatelyElm1)whengivenarbitrary assertions about thedesiredbehavior
of the code. Smyth is written in OCaml, licensed under the MIT License, and freely
available on GitHub at

https://github.com/UChicago-PL/smyth.

The Smyth codebase at the time of the submission of this thesis is archived under the
lubin-thesis tag of the above GitHub repository, and all file paths mentioned in this
thesis are relative to the root of that archive.

This project took approximately 16,000 lines of code, with the core algorithm for Smyth
taking approximately 6,500 of those lines. The remainder of the code is dedicated to an
enhanced standard library of helper functions, the experiments andbenchmarkspresented
in Program Sketching with Live Bidirectional Evaluation, and the command-line interface for
Smyth (which is depicted in Figure 1).2

Although the implementation of Smyth follows the Program Sketching with Live Bidi-
rectional Evaluation formalization directly for the most part, there are some critical opti-
mizations and choices that allow Smyth to be realized as code and usably performant.
These details are described in Section 2. Following these details is an overview of the ar-
chitecture of the implementation of Smyth in Section 3, bridging the gap between theory

1https://elm-lang.org/, accessed June 2020.
2Statistics gathered using Tokei, https://github.com/XAMPPRocky/tokei, accessed June 2020.
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and implementation. Finally, Section 4 concludes with a discussion of interesting avenues
of future research at the intersection of human-computer interaction and the theory and
implementation of program synthesis.

N.B. The theory of Smyth is in part based on the research detailed in Peter-Michael
Osera’s PhD thesis [2], which presents its own implementation of a program synthesizer
by the name of Myth. In this thesis, I refer to Osera’s thesis as “the Myth thesis” and often
situate Smyth relative to Myth.

2 Implementation Details and Optimizations

This section begins the overview of the implementation of Smyth by exploring the imple-
mentation choices that went into making Smyth realizable as code and usably performant.

2.1 Implementation Techniques Inherited from Myth

First, I will detail the implementation techniques that Smyth inherits from Myth. Notably
absent from this section is the notion of preserving information from failed hole fillings
across synthesis attempts—anoptimizationpossible inMythbut not directly generalizable
to Smyth. Section 4.1.1 discusses this matter further.

2.1.1 Collection Semantics

Myth and Smyth are inherently nondeterministic algorithms. The nondeterminism inher-
ent in the choice of rules (both for unevaluation and for synthesis) in the formalization
of Smyth is represented explicitly in the code using the list monad, which corresponds to
what Osera describes as “collection semantics” in Section 7.2 of the Myth thesis.

2.1.2 Termination Checking

Myth employs a check during program synthesis to ensure that all recursive calls are
structurally decreasing, that is, that the argument to a recursive function recursive call is a
strict subterm of the parameter to the recursive call.

Smyth employs this same restriction. One limitation of this approach (as implemented)
arises from the fact that all functions inSmythhave exactly oneparameter (multi-parameter
functions are curried). As a consequence, only recursive calls that are structurally decreas-
ing on the “first” argument of multi-parameter (curried) functions are accepted as valid.
To sidestep this issue, some of the sketches in the benchmark suites have unconventional
orderings of parameters or internal helper functions with one argument.

2.1.3 Timeouts

Like Myth, Smyth cuts off term enumeration after a small amount of time has elapsed
(0.25s in both systems). Additionally, Smyth cuts off evaluation after 0.1s to eliminate any
unlikely pathological program candidates. Lastly, for usability considerations, Myth and
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Smyth both also cut off the entire synthesis procedure if too much time has elapsed since
the initial synthesis request.

2.1.4 Staged Synthesis Plan

Myth employs a staged approach to program synthesis whereby specific search param-
eters begin at highly restricted values and are gradually relaxed as the search with these
parameters fails until the search finally succeeds (or times out). The parameters that
undergo this progressive staging (known as the “synthesis plan”) are:

• Match depth, or, how many nested case expressions the synthesizer is allowed to
synthesize;

• Scrutinee size, or, how large the AST of the scrutinee of the synthesized case expres-
sions can be; and

• Guessed term size, or, how large the AST of the terms that are produced by type-
directed term guessing (i.e. “term generation” or “term enumeration”) without the
guidance from examples can be.

Smyth follows the same approach (with the same parameters) and the same overall syn-
thesis plan as Myth, albeit with slightly more granular stages. The Myth synthesis plan
was determined experimentally, and so too was the Smyth synthesis plan. Appendix A of
the Myth thesis includes more details.

2.1.5 Informativeness Restriction

Section 7.3.2 of theMyth thesis details how to cut downon redundant patternmatching (an
important concern because case expressions introduce a high degree of nondeterminism
in both Myth and Smyth) by introducing an “informativeness restriction.” Smyth follows
suit with the same restriction, which disallows pattern matching when fewer than two
of the branches get new examples distributed to them (that is, when pattern matching
actually does not produce any “new information”).

Notably, this restriction prevents underspecification of functions that might actually
be desirable. For example, synthesis of the function head : NatList -> Nat with the as-
sertion assert head [1, 2] == 1might reasonably be expected to produce the following
result:

head : NatList -> Nat
head xs =

case xs of
[] -> ??
y :: _ -> y

However, only the non-empty case of this pattern match has an example distributed to
it, so the informativeness restriction criterion fails and this case expression cannot be
synthesized. The immense performance benefit of the informativeness restriction allows
a much broader class of programs to be synthesized while only sacrificing the ability to
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synthesize these kinds of underspecified functions more cleverly, making this tradeoff
worth implementing overall.

2.1.6 Cached Term Enumeration

Section 7.3.4 of the Myth thesis details how to achieve efficient raw term enumeration
based on a careful caching strategy. Smyth follows the same strategy.

2.1.7 Rule Order

Similarly to Myth, Smyth performs “fill” rules in the following order: (1) branch, (2) re-
fine, (3) guess. Branching is prioritized over refinement because constructor refinements
idiomatically occur at the leaves of case expressions. Refinement is prioritized over guess-
ing for increased efficiency: there is often no need to “guess” if the example worlds clearly
indicate that all examples have a common refinement. However, to be clear, even when
refinement is possible, term guessing sometimes actually is the correct path to take. This
behavior occurs, for example, when Smyth should be synthesizing a call to a helper func-
tion whose outputs always have a common refinement, as may be the case, for example,
with a helper function that always returns a positive natural number.

2.2 Novel Implementation Techniques

Sketches, live unevaluation, and support for polymorphic type operators pose additional
implementation challenges not addressed by Myth. Accordingly, I will now describe the
implementation details and optimizations that are novel to Smyth.

2.2.1 Restricting unevaluation rules

The rule U-Case in Program Sketching with Live Bidirectional Evaluation presents the most
general form of unevaluation onto a case expression, but it is highly nondeterministic
and impractical for large synthesis tasks. As an alternative, Program Sketching with Live
Bidirectional Evaluation presents U-Case-Guess, which “eagerly” fills indeterminate case
expressions (that is, case expressions with a hole in the scrutinee) with a “guess.” This
“guess” truly is just that: only type (and no example) information can be used to fill a
scrutinee in an indeterminate case. The implementation of Smyth simply calls raw term
enumeration to fill scrutinees of indeterminate case expressions with a term of size 1;
slightly larger terms should be, in theory, feasible, but are often unneccessary because the
scrutinee of case expressions is typically just a variable name. (This setting worked for all
benchmarks and sketches presented in Program Sketching with Live Bidirectional Evaluation.)

Smyth first tries to solve synthesis tasks using a restricted form of unevaluation that
includes all the rules except for U-Case. If this approach fails, Smyth tries again from
scratch using the more general form of unevaluation that includes all the rules except for
U-Case-Guess.
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2.2.2 Restricting unevaluation depth

To further reduce the nondeterminism inherent in live unevaluation, the implementation
of Smyth introduces two new parameters:

• The unevaluation case budget (set to 10 in the implementation), which sets a limit to
the number of times U-Case is allowed to be called (only applicable when Smyth is
in the “unrestricted” unevaluation mode, as described in the previous paragraph).

• The unevaluation limiter (set to 10 in the implementation), which immediately cuts
off any unevaluation path that exceeds a certain number of nondeterministic possi-
bilities (thereby eliminating pathological search paths that are unlikely to succeed).

2.2.3 Polymorphic Type Operators

Smyth supports both System F universal polymorphism and user-defined polymorphic
type operators, an example of the latter being

type List a
= Nil
| Cons a (List a)

(The unapplied type List on its own, however, ismeaningless in Smyth; full higher-kinded
types are not supported.) Chapter 9 of the Myth thesis details how to extend Myth to
include System F universal polymorphism (and the details generalize as expected in
Smyth), but does not include a description of how to support polymorphic type operators.

The changes to the Smyth codebase to support polymorphic type operatorswere largely
straightforward except for in one place: synthesis of case scrutinees. When synthesiz-
ing a case scrutinee, Myth and Smyth attempt synthesis at every data type in scope.
But with the inclusion of a single polymorphic type operator (and a base type), there
are an infinite number of data types in scope (for example, List Nat, List (List Nat),
List (List (List Nat)), etc.). All of these are valid types for the scrutinee of a case
expression. Raw term enumeration occurs at a single type, but in this instance there is an
infinite family of types that serve as the goal to term enumeration.

To capture this notion of an infinite class of types, I introduced the notion of a type
wildcard (∗) to Smyth and extended the standard syntactic notion of type equality (�) to
type matching (≡∗):

τ Type σ Type τ � σ

τ ≡∗ σ
[Match-Equality]

τ Type
∗ ≡∗ τ

[Match-Left]
τ Type
τ ≡∗ ∗

[Match-Right]

Scrutinee synthesis then occurs as before (once per data type), but with polymorphic
data types instantiated with the wildcard type. Raw term enumeration then substitutes
equality for type matching wherever necessary to compensate.
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Concept/Figure File (in lib/smyth/)

Syntax of Core Smyth lang.ml

Type checking type.mli

Expression evaluation eval.mli

Resumption eval.mli

Example satisfaction example.mli

Constraint satisfaction constraints.mli

Constraint merging constraints.mli

Live bidirectional example checking uneval.mli

Example unevaluation uneval.mli

Program evaluation eval.mli

Result consistency res.mli

Assertion satisfaction and simplification uneval.mli

Constraint simplification solve.mli

Constraint solving solve.mli

Type-and-example-directed hole synthesis fill.mli

Type-directed guessing (term generation) term_gen.mli

Type-and-example-directed refinement refine.mli

Type-and-example-directed branching branch.mli

Table 1: An injection from concepts in Program Sketching with Live Bidirectional Evaluation
to the Smyth codebase.

3 Bridging Theory and Implementation

Although Program Sketching with Live Bidirectional Evaluation describes the working parts
of Smyth at a high level and Section 2 describes them in low-level detail, it may still be
hard to visualize the entire structure of the algorithm realized as actual code. This section
aims to walk the reader through how to observe the moving parts of Smyth come together
in the UChicago-PL/smyth repository, serving as a bridge between the formalization and
the implementation.

The lib/smyth directory of contains all the code for the core implementation of the
Smyth synthesis algorithm. The lib/stdlib2 directory contains helper functions that
are used throughout the codebase. The src directory contains the code relevant to the
command-line interface to Smyth, as well as some code that is used for its experimental
evaluation. All parameters used to tweak and tune Smyth are located in the Paramsmodule
found in lib/smyth/params.ml.

Table 1 provides a roadmap of where each concept/figure in Program Sketching with
Live Bidirectional Evaluation can be found in the codebase, in order of presentation in the
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paper. The file lib/smyth/endpoint.ml contains the solve function which takes in a string
containing the textual representation of a program sketch and outputs a list of valid hole
fillings (synthesis solutions). The solve function is called from the command-line interface
in src and ties all the code together into the “synthesis pipeline” as follows:

1. Parse the given sketch into a Lang.program using Parse.program.

2. Desugar the Lang.program into a Lang.exp using Desugar.program.

3. Type check the Lang.exp against the unit type using Type.check.

4. Evaluate the Lang.exp using Eval.eval.

5. Using the restricted notion of unevaluation from Section 2.2.1, unevaluate any as-
sertions that result from evaluation using Uneval.simplify_assertions.

6. Solve the constraints generated by unevaluation using Solve.solve_any (the “staged
synthesis plan” described in Section 2.1.4 occurs here in the Solve module).

7. If Step 6 fails, retry Step 5 with unrestricted unevaluation (as described in Sec-
tion 2.2.1).

8. Return the result of Solve.solve_any; that is, a list of valid hole fillings.

Because this procedure returns a list of hole fillings—all of which are valid—the
program must make a choice on how to rank these hole fillings in order of display to the
user. In Section 7.2.1 of the Myth thesis, Osera defines the minimum program principle,
which Myth follows: “in program synthesis, smaller satisfying programs (in terms of
program size) are more likely to generalize to the desired behavior intended by the user.“
Following this same principle, Smyth ranks solutions by AST size, with some special
affordances to correct for some necessary boilerplate in our choice of syntax (unit tuples
and tuple projections cost nothing to compensate for the fact that all constructors take
exactly one argument in Smyth).

4 Future Directions

This section concludes with some avenues of future work, drawing from the theories
and practices of both program synthesis and human-computer interaction. Although
the challenges to be addressed are here delineated into these two broad categories, true
resolutions will need to draw from both disciplines to be maximally successful.

4.1 Avenues in Program Synthesis

4.1.1 Fill Caching

In the implementation of Smyth, when a path in the synthesis search space fails, the
corresponding hole filling is discarded. In the implementation of Myth, however, this
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information is retained and, in fact, shared between all paths in the synthesis search space.
In other words, Myth can store a single hole filling that gets updated with information
from all paths in the synthesis search space. Partial solutions that have succeeded along
the ultimately failed path can then be reused later in the synthesis procedure (such as
when the staged parameters are increased).

N.B. Myth keeps track of all synthesis outputs in a data structure called a refinement
tree, essentially equivalent to Smyth’s notion of a hole filling. In this thesis, I will refer
exclusively (albeit anachronistically) to hole fillings rather than refinement trees.

The reason why Myth can perform this optimization—which I here call fill caching—is
because hole fillings that are valid in one path in the search space will be valid in all paths.
This is because new constraints over goals (or, in Smyth, holes) are never generated; all
constraints are known up-front. Smyth, on the other hand, can introduce new (possibly
conflicting) constraints in different paths in the search space—this is one reason why
Smyth does not require trace-complete examples but Myth does.

Hole fillings that are valid in Smyth may only be valid given very difficult or patho-
logical constraints, and might ultimately not lead to the desired solution. Hole fillings in
Myth, though, will always be valid, and can thus be cached and shared in a single hole
filling accross multiple search branches.

Although it is a fundamental aspect of Smyth that the solutions cannot be directly
shared from one branch of the search space to another, a reasonable question is to ask:
what knowledge can be gained from failed search paths? Or, put another way, when a
synthesis seatch path fails, what can be reused? In Myth, the answer is that all valid work
done is reusable. In Smyth, the answer will have to be more nuanced. If there is to be a
single hole filling cache, it will likely need to keep track of the exact constraints over other
holes used to derive solutions, and cache hits should occur only if these constraints are
met in the code relying on the cache. For now, though, this optimization remains an open
problem.

4.1.2 Functional Axioms

Systems such as λ2 [3] have special built-in axioms for particular functions that greatly aid
their synthesis search (for example, the axiom that map g . map f == map (g . f)). It
may be possible to encode these rules as special “introduction forms” for these functions
so that examples can be refined according to these axioms, speeding up the synthesis
procedure for functions that rely on these general-purpose combinators by taking work
done by raw term enumeration (which is just “guessing”) and giving it to type-and-
example-directed refinement.

4.1.3 Richer Type Systems

Smyth is an evaluator-based program synthesizer and does not rely on logical techniques
such as an SMT solver. However, Smythdoes take full advantage of a rich (but simple) type
system, which indicates that Smyth may generalize to even richer type systems, including
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refinement types and more powerful dependent type theories, which may offer paths to
merging logical- and evaluator-based synthesis in Smyth.

A simpler direction to extend the type system would be to include base types (such
as “native integers” or “native strings”). Naïvely, base types could essentially each be
treated as unique constructors over a datatype: example refinement would only occur
if each example was exactly the same base type. But this approach does not add much
in the ways of expressivity to the system; much more interesting would be to figure out
a meaningful way of “refining” base types, perhaps through the addition of functional
axioms as described in Section 4.1.2.

4.2 Avenues in Human-Computer Interaction

4.2.1 Solution Ranking

Empirically, the minimum program principle described in Section 3 works well, but it is
not the end of the story for program synthesis. Given multiple solutions of similar sizes,
which one should a synthesizer display to a user? In what ways can synthesizers explain
the difference between the synthesized solutions so that the user can bemore confident (and
accurate) in their selection? Smyth goes no further than the minimum program principle,
but if Smyth or other program synthesiers are to ever be usable by a wide audience, these
questions must be addressed.

4.2.2 Interactivity

Smyth, via live unevaluation, provides a rich opportunity to take advantage of interactivity
by lifting the requirement that all examples be provided up-front. One interesting way to
explore this possibility is through the use of a structured editor, such as the lightweight
overlay provided by the Deuce editor [4]. Users could hover over expressions in the
code and provide examples on-the-fly for what those expressions should evaluate to in a
given environment, and Smyth could unevaluate those assertions and perform synthesis
with the resulting constraints as usual. This approach and others to enhancing human
interactivity in program synthesis will hopefullymake program synthesis more accessible
and usable by non-experts.

4.2.3 Usability Evaluation

This thesis presents a theoretical formulation and empirical evaluation of Smyth, but stops
short ofmeasuring howwell actual humans can use the tool. Even simple usability studies
to see what kinds of examples users provide to a system like Smyth would be a great start
toward designing accessible program synthesizers. Other questions that user studies may
be able to address include:

• How do users modify their examples when synthesis fails? And how can the
synthesizer instruct them in the most effective way to do so?

• When do users reach for program synthesizers over just writing functions them-
selves? At what point is the burden of writing code greater than that of writing
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synthesis specification (and, more specifically to Smyth and other program sketch-
ing tools, program assertions)?

Investigation of such questions would be of great value in broadening the class of users
who can reap the benefits of research in program synthesis.
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