
resource type Logger

 effect log

 def append(contents : String) : {log} Unit

module def reversePlugin(name : String)

 var logger : Logger = ...

 def setLogger(newLogger : Logger) : Unit

 logger = newLogger

 def run(s : String) : String

 val t = s.reverse()

 logger.append(name + “: ” + s + “ -> ” + t)

 t

Approximating Polymorphic
Effects with Capabilities

Motivation

Background

The Problem

Usage

Implementation

Transformed Type

References

Proposed Solution

resource type Logger[effect E]

 def append(contents : String) : {E} Unit

module def reversePlugin[effect E](name : String)

 var logger : Logger[E] = ...

 def setLogger(newLogger : Logger[E]) : {E} Unit

 logger = newLogger

 def run(s : String) : {E} String

 val t = s.reverse()

 logger.append(name + “: ” + s + “ -> ” + t)

 t

import fileLogger, databaseLogger, reversePlugin

val logger1 = fileLogger(...)

val logger2 = databaseLogger(...)

val plugin = reversePlugin[logger1.log](“archive”)

def main() : {logger1.log} Unit

 plugin.setLogger(logger1)

 // plugin.setLogger(logger2) <-- not allowed!

resource type MyPlugin

 def setLogger(newLogger : Logger’) : {logger1.log} Unit

 def run(s : String) : {logger1.log} String

resource type Logger’

 effect log = {logger1.log}

 def append(contents : String) : {log} Unit

Effect systems can formalize capability-based reasoning, but their verbosity has proven to be a usability concern. To
remove the burden of full effect annotation, we propose a method to handle mixing effect-annotated code with effect-
unannotated code in a capability-safe language with mutable state and effect polymorphism.

Justin Lubin1, Darya Melicher2, Alex Potanin3, Jonathan Aldrich2

1University of Chicago, USA 2Carnegie Mellon University, USA 3Victoria University of Wellington, NZ

Capability-safe languages guarantee
that only code explicitly given access
to sensitive resources is able to
do so [5], but capabilities alone do
not provide a method of formally
reasoning about resource access in a
codebase.

How will annotated code use reversePlugin?
Because of effect polymorphism and mutability,
the concrete effect in logger could be anything!
At best, the effect bound in the annotated code
would be the union of effects in every single
assignment to logger in the entire program.

The effect parameters act as a permission system for the
interface between the annotated and unannotated code.

Import bound inferencer
Uses capability safety and Craig et al.’s import semantics to compute a lower and
upper bound on the set of valid effects that can be passed into the unannotated
code to ensure that it remains effect-safe.

Quantification lifter
Takes an unannotated module functor of type τ1 → τ2 and transforms it into a
functor of type ∀ε (L ⊆ ε ⊆ U) . τ1 → (τ2)ε, where L and U are the bounds from
the import bound inferencer and (τ2)ε is τ2 with its declarations modified with ε.

The polymorphic code has become monomorphized, so the
annotated code knows exactly what the effect bound is.

[1] Aaron Craig, Alex Potanin, Lindsay Groves, and Jonathan Aldrich. 2018. Capabilities: Effects for Free. In Proceedings of the 20th
International Conference on Formal Engineering Methods (ICFEM’18).

[2] Dominique Devriese, Lars Birkedal, and Frank Piessens. 2016. Reasoning about Object Capabilities with Logical Relations and
Effect Parametricity. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P). 147–162. https: //doi.org/10.1109/
EuroSP.2016.22

[3] Joseph R. Kiniry. 2006. Exceptions in Java and Eiffel: Two Extremes in Exception Design and Application. Springer Berlin Heidelberg,
Berlin, Heidelberg, 288–300. https://doi.org/10.1007/11818502_16

[4] Darya Melicher, Yangqingwei Shi, Valerie Zhao, Alex Potanin, and Jonathan Aldrich. 2018. Using Object Capabilities and Effects
to Build an Authority-safe Module System: Poster. In Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in
the Science of Security (HoTSoS’18). ACM, New York, NY, USA, Article 29, 1 page. https://doi.org/10.1145/3190619.3191691

[5] Mark Samuel Miller. 2006. Robust Composition: Towards a Unified Approach to Access Control and Concurrency Control. Ph.D.
Dissertation. Johns Hopkins University.

[6] Valerie Zhao. 2017. Abstracting Resource Effects. In Proceedings Companion of the 2017 ACM SIGPLAN International Conference
on Systems, Programming, Languages, and Applications: Software for Humanity (SPLASH Companion 2017). ACM, New York, NY,
USA, 48–50. https://doi.org/10.1145/3135932.3135946

Our solution is to lift effect polymorphism
from inside the ML-style module functor to the
module functor itself, collapsing each of the
universal effect quantifications into a single
quantified effect E, which then serves as the
effect bound for all the methods in the module.

Quantification
lifting

Import bound
inferencing

Craig et al. introduced semantics for
a special “import” construct for a
capability-safe lambda calculus that
allows safe mixing of annotated code
with unannotated code [1], but it does
not handle mutable state nor effect
polymorphism.

Effect systems can formalize capability-
based reasoning [2, 4, 6], but an
important usability concern is the
requirement that all effectful code be
fully annotated, including third-party
plugins, high-level libraries, and other
less safety-critical components [3].

