
The ABCs of ADTs
Algebraic Data Types

Justin Lubin
January 18, 2018

Asynchronous Anonymous @ UChicago

Overview

A. What is an algebraic data type?

B. Why are algebraic data types useful?

C. Why are algebraic data types cool?

What is an algebraic data type?

What is a type?

Data = ones & zeros
Types = intent

A type is a label on a piece of
data that describes a set of
values that it may take on.

Some basic types

● Boolean
True, False

● Character
‘A’, ‘B’, ..., ‘Z’, ‘a’, ‘b’, ..., ‘z’

● Integer
..., -3, -2, -1, 0, 1, 2, 3, ...

Untyped vs. typed programs

fn add(x, y) {
 return x + y;
}

>>> add(3, 2)
5

>>> add(true, false)
Runtime error!

fn int add(int x, int y) {
 return x + y;
}

>>> add(3, 2)
5

>>> add(true, false)
Compile-time error!

Untyped vs. typed programs

fn and(x, y) {
 return x * y;
}

>>> add(true, false)
Runtime error!

fn bool and(bool x, bool y) {
 return x * y;
}

Compile-time error!

What is an algebraic data type (ADT)?
Algebraic data type = a type defined by type constructors in terms of data constructors.

type Boolean = False | True

type Character = ‘A’ | ‘B’ | ... | ‘Z’ | ‘a’ | ‘b’ | ... | ‘z’

type Integer = ... | -3 | -2 | -1 | 0 | 1 | 2 | 3 | ...

type HttpError = NotFound | InternalServerError | ...

Fancier type constructors
type Shape
 = Rectangle Float Float Float Float
 | Circle Float Float Float

area : Shape -> Float
area shape =
 case shape of
 Rectangle x y width height ->
 width * height

 Circle x y radius ->
 π * radius * radius

>>> r = Rectangle 0 0 10 5

r : Shape

>>> area r

50.0

>>> c = Circle 2 4 10

c : Shape

>>> area c

314.159265

Quick aside: type aliases

type Shape
 = Rectangle Float Float Float Float
 | Circle Float Float Float

Quick aside: type aliases

type alias Position = Float
type alias Width = Float
type alias Height = Float
type alias Radius = Float

type Shape
 = Rectangle Position Position Width Height
 | Circle Position Position Radius

Quick aside: type aliases

type alias Position = Double
type alias Width = Double
type alias Height = Double
type alias Radius = Double

type Shape
 = Rectangle Position Position Width Height
 | Circle Position Position Radius

Case study: find

Case study: find (ideal situation)
>>> x = find 19 [10, 13, 19, 44]
2

>>> y = find 10 [10, 13, 19, 44]
0

>>> absoluteValue (y - x)
2

>>> x = find 19 [10, 13, 19, 44]
2

>>> y = find 876 [10, 13, 19, 44]
-1

>>> “The distance is:” ++ toString (absoluteValue (y - x))
The distance is: 3

Case study: find (problematic situation)

Case study: find (problematic situation)
>>> x = find 19 [10, 13, 19, 44]
2

>>> y = find 876 [10, 13, 19, 44]
null

>>> “The distance is:” ++ toString (absoluteValue (y - x))
Runtime error! Null pointer exception (or something)!

Case study: find (with algebraic data types)
>>> x = find 19 [10, 13, 19, 44]
Just 2

>>> y = find 876 [10, 13, 19, 44]
Nothing

>>> “The distance is:” ++ toString (absoluteValue (y - x))
Compile-time error! Can’t perform subtraction on type Maybe Int.

Case study: find (with algebraic data types)
>>> x = find 19 [10, 13, 19, 44]
Just 2

>>> y = find 876 [10, 13, 19, 44]
Nothing

>>> case (x, y) of
 (Just index1, Just index2) ->
 “The distance is:” ++ toString (absoluteValue (index2 - index1))
 _ ->
 “I can’t find the distance between these...”

Maybe type constructor

type Maybe a
 = Just a
 | Nothing

Maybe type constructor

type Maybe a
 = Just a
 | Nothing

Maybe type constructor

type Maybe stuff
 = Just stuff
 | Nothing

Maybe is not a type! (Maybe a is)

● Maybe Bool
Just True, Just False, ..., Nothing

● Maybe Character
Just ‘A’, Just ‘q’, ..., Nothing

● Maybe Integer
Just (-1), Just 14, Just 0, ..., Nothing

● Maybe
???

Maybe is not a type! (Maybe a is)

● Maybe Bool
Just True, Just False, ..., Nothing

● Maybe Character
Just ‘A’, Just ‘q’, ..., Nothing

● Maybe Integer
Just (-1), Just 14, Just 0, ..., Nothing

● Maybe
???

Case study: find

find : Int -> List Int -> Maybe Int

— or —

find : a -> List a -> Maybe Int

List type constructor

type List a
 = EmptyList
 | Cons a (List a)

List type constructor

type List a
 = EmptyList
 | Cons a (List a)

List type constructor

type List a
 = EmptyList
 | Cons a (List a)

>>> []
EmptyList

>>> [1, 2, 3]
Cons 1 (Cons 2 (Cons 3 EmptyList))

List type constructor

type List a
 = EmptyList
 | Cons a (List a)

>>> []
EmptyList

>>> [1, 2, 3]
Cons 1 (Cons 2 (Cons 3 EmptyList))

List type constructor

type List a
 = EmptyList
 | Cons a (List a)

>>> []
EmptyList

>>> [1, 2, 3]
Cons 1 (Cons 2 (Cons 3 EmptyList)) -- a = Int

List type constructor

type List a
 = EmptyList
 | Cons a (List a)

>>> []
EmptyList

>>> [1, 2, 3]
Cons 1 (Cons 2 (Cons 3 EmptyList)) -- a = Int

List type constructor

type List a
 = EmptyList
 | Cons a (List a)

>>> []
EmptyList

>>> [1, 2, 3]
Cons 1 (Cons 2 (Cons 3 EmptyList)) -- a = Int

Quick aside: strings

type alias String = List Character

>>> “Hello”
[‘H’, ‘e’, ‘l’, ‘l’, ‘o’]
-- Cons ‘H’ (Cons ‘e’ (Cons ‘l’ (Cons ‘l’ (Cons ‘o’ EmptyList))))

>>> find ‘e’ “Hello”
Just 1

List is not a type! (List a is)

● List Bool
[], [True], [False], [True, False, True], ...

● List Character
[], [‘a’], [‘b’, ‘c’], [‘d’, ‘d’, ‘d’, ‘e’], ...

● List Integer
[], [1], [-1, 0, 1], [3, 3, 3, 3, 3], [4], ...

● List
???

● List (Maybe Bool) [],
[Just False],
[Just True, Nothing],
[Nothing], ...

● Maybe (List Bool) Nothing,
Just [True, False],
Just [True],
Just [False],
Just [False, False, False], ...

Quick aside: composing types (order matters!)

type BinaryTree a
 = Leaf a
 | Node (BinaryTree a) a (BinaryTree a)

Example: binary trees

type Pair a b
 = P a b

Example: pairs

>>> a = (P 103 “hi”)
(P 103 “hi”) : Pair Integer String

Commonly denoted:
>>> b = (103, “hi”)
(103, “hi”) : (Integer, String)

type alias Zipper a
 = (List a, List a)

Final example: list zipper
>>> a = ([1, 2, 3, 4], [])
([1, 2, 3, 4], [])
>>> b = next a
([2, 3, 4], [1])
>>> c = next b
([3, 4], [2, 1])
>>> d = next c
([4], [3, 2, 1])
>>> e = prev d
([3, 4], [2, 1])
>>> focus e
3

Why are algebraic data types useful?

Benefits of ADTs

+ Provide an incredibly general mechanism to describe types

+ Allow us to express types like Maybe a
○ Eliminate an entire class of bugs: null pointer exceptions

+ Promote composability of types (code reuse = good)

+ Urge us to fully consider our problem domain before coding

− Can be too general/abstract to understand easily “in the wild”
○ To avoid incomprehensible code: choose the simplest possible

abstraction needed for the problem at hand

So... who has ‘em?
● Elm
● Haskell
● Kotlin
● ML (OCaml, Standard ML, ...)
● Nim
● Rust
● Scala
● Swift
● Typescript

More: https://en.wikipedia.org/wiki/Algebraic_data_type#Programming_languages_with_algebraic_data_types

https://en.wikipedia.org/wiki/Algebraic_data_type#Programming_languages_with_algebraic_data_types

That’s great and all, but...

Why are algebraic data types cool?

Answer: math
● Why are algebraic data types called “algebraic”?

● Question: Let N be the number of values of type a. How many values of type
Maybe a are there?

● Answer: N + 1. We have all the values of type a and also Nothing.

● Question: Is there a systematic way of answering these kinds of questions?

● Answer: Yes! ☺

A closer look at the ADT of Maybe a

type Maybe a
 = Just a
 | Nothing

Size(Maybe a)
 = Size(Just a) + Size(Nothing)
 = N + 1.

Associated function:
 M(a) = a + 1.

A closer look at the ADT of Pair a b

type Pair a b
 = P a b

Size(Pair a b)
 = Size(a) · Size(b)

Associated function:
 P(a, b) = a · b.

Sum and product types

type Maybe a
 = Just a
 | Nothing

type Pair a b
 = P a b

type Shape
 = Rectangle Float Float Float Float
 | Circle Float Float Float

We can define addition and
multiplication on types...
what else can we define?

A closer look at the ADT of List a

type List a
 = EmptyList
 | Cons a (List a)

Associated function:
 L(a) = 1 + a·L(a)
 ⇒ L(a) – a·L(a) = 1
 ⇒ L(a)·(1 – a) = 1
 ⇒ L(a) = 1 / (1 – a).

A closer look at the ADT of Zipper a

type alias Zipper a
 = (List a, List a)

Associated function:
 Z(a) = L(a) · L(a)
 ⇒ Z(a) = L(a)2.

Subtraction? Division? Do
those even make sense?

A better question: why stop there?

A better question: why stop there?

Calculus on algebraic data types

We know:
● L(a) = 1 / (1 – a)
● Z(a) = L(a)2

Let’s find dL/da:
dL/da = d/da [L(a)]

= d/da [1 / (1 – a)]
= 1 / (1 – a)2

= [1 / (1 – a)]2

= L(a)2

= Z(a).

The derivative of a list is a
zipper?! How could this
possibly make any sense?!

A shift in perspective
● Derivative = slope at a point...?

○ ... really, derivative = local information at a point
○ With the derivative, we know the slope locally, but that doesn’t tell us anything about the

behavior of a function globally
○ Contrast: integration = global information

● Key point: zippers tell us local information about a list by means of a
single, focused element

● If we run a zipper along the entirety of a list (if we “integrate” the zipper),
we get information about the list globally
○ ⭐ Fundamental theorem of calculus! ⭐

Questions we answered

A. What is an algebraic data type?

B. Why are algebraic data types useful?

C. Why are algebraic data types cool?

Interested in more?
● CMSC 16100 includes a lot of content about ADTs and related concepts

● Wikipedia:
https://en.wikipedia.org/wiki/Algebraic_data_type

● If you want more generality:
https://en.wikipedia.org/wiki/Generalized_algebraic_data_type

● My first introduction to the subject of calculus on ADTs, a very well-written series:
http://chris-taylor.github.io/blog/2013/02/10/the-algebra-of-algebraic-data-types/

● Another good article about calculus on ADTs:
https://codewords.recurse.com/issues/three/algebra-and-calculus-of-algebraic-data-types

https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Generalized_algebraic_data_type
http://chris-taylor.github.io/blog/2013/02/10/the-algebra-of-algebraic-data-types/
https://codewords.recurse.com/issues/three/algebra-and-calculus-of-algebraic-data-types

Thank you!
Justin Lubin

justinlubin@uchicago.edu

A big thanks to Asynchronous Anonymous, too!

mailto:justinlubin@uchicago.edu

