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Overview

A. What is an algebraic data type?

B. Why are algebraic data types useful?

C. Why are algebraic data types cool?



What is an algebraic data type?



What is a type?

Data = ones & zeros
Types = intent



A type is a label on a piece of 
data that describes a set of 
values that it may take on.



Some basic types

● Boolean
True, False

● Character
‘A’, ‘B’, ..., ‘Z’, ‘a’, ‘b’, ..., ‘z’

● Integer
..., -3, -2, -1, 0, 1, 2, 3, ...



Untyped vs. typed programs

fn add(x, y) {
  return x + y;
}

>>> add(3, 2)
5

>>> add(true, false)
Runtime error!

fn int add(int x, int y) {
  return x + y;
}

>>> add(3, 2)
5

>>> add(true, false)
Compile-time error!



Untyped vs. typed programs

fn and(x, y) {
  return x * y;
}

>>> add(true, false)
Runtime error!

fn bool and(bool x, bool y) {
  return x * y;
}

Compile-time error!



What is an algebraic data type (ADT)?
Algebraic data type = a type defined by type constructors in terms of data constructors.

type Boolean = False | True

type Character = ‘A’ | ‘B’ | ... | ‘Z’ | ‘a’ | ‘b’ | ... | ‘z’

type Integer = ... | -3 | -2 | -1 | 0 | 1 | 2 | 3 | ...

type HttpError = NotFound | InternalServerError | ...



Fancier type constructors
type Shape
  = Rectangle Float Float Float Float
  | Circle Float Float Float

area : Shape -> Float
area shape =
  case shape of
    Rectangle x y width height ->
      width * height

    Circle x y radius ->
      π * radius * radius

>>> r = Rectangle 0 0 10 5

r : Shape

>>> area r

50.0

>>> c = Circle 2 4 10

c : Shape

>>> area c

314.159265



Quick aside: type aliases

type Shape
  = Rectangle Float Float Float Float
  | Circle Float Float Float



Quick aside: type aliases

type alias Position = Float
type alias Width = Float
type alias Height = Float
type alias Radius = Float

type Shape
  = Rectangle Position Position Width Height
  | Circle Position Position Radius



Quick aside: type aliases

type alias Position = Double
type alias Width = Double
type alias Height = Double
type alias Radius = Double

type Shape
  = Rectangle Position Position Width Height
  | Circle Position Position Radius



Case study: find



Case study: find (ideal situation)
>>> x = find 19 [10, 13, 19, 44]
2

>>> y = find 10 [10, 13, 19, 44]
0

>>> absoluteValue (y - x)
2



>>> x = find 19 [10, 13, 19, 44]
2

>>> y = find 876 [10, 13, 19, 44]
-1

>>> “The distance is:” ++ toString (absoluteValue (y - x))
The distance is: 3

Case study: find (problematic situation)



Case study: find (problematic situation)
>>> x = find 19 [10, 13, 19, 44]
2

>>> y = find 876 [10, 13, 19, 44]
null

>>> “The distance is:” ++ toString (absoluteValue (y - x))
Runtime error! Null pointer exception (or something)!



Case study: find (with algebraic data types)
>>> x = find 19 [10, 13, 19, 44]
Just 2

>>> y = find 876 [10, 13, 19, 44]
Nothing

>>> “The distance is:” ++ toString (absoluteValue (y - x))
Compile-time error! Can’t perform subtraction on type Maybe Int.
    



Case study: find (with algebraic data types)
>>> x = find 19 [10, 13, 19, 44]
Just 2

>>> y = find 876 [10, 13, 19, 44]
Nothing

>>> case (x, y) of
      (Just index1, Just index2) ->
        “The distance is:” ++ toString (absoluteValue (index2 - index1))
      _ ->
        “I can’t find the distance between these...”



Maybe type constructor

type Maybe a
  = Just a
  | Nothing



Maybe type constructor

type Maybe a
  = Just a
  | Nothing



Maybe type constructor

type Maybe stuff
  = Just stuff
  | Nothing



Maybe is not a type! (Maybe a is)

● Maybe Bool
Just True, Just False, ..., Nothing

● Maybe Character
Just ‘A’, Just ‘q’, ..., Nothing

● Maybe Integer
Just (-1), Just 14, Just 0, ..., Nothing

● Maybe
???



Maybe is not a type! (Maybe a is)

● Maybe Bool
Just True, Just False, ..., Nothing

● Maybe Character
Just ‘A’, Just ‘q’, ..., Nothing

● Maybe Integer
Just (-1), Just 14, Just 0, ..., Nothing

● Maybe
???



Case study: find

find : Int -> List Int -> Maybe Int

— or —

find :  a  -> List  a  -> Maybe Int



List type constructor

type List a
  = EmptyList
  | Cons a (List a)



List type constructor

type List a
  = EmptyList
  | Cons a (List a)



List type constructor

type List a
  = EmptyList
  | Cons a (List a)

>>> []
EmptyList

>>> [1, 2, 3]
Cons 1 (Cons 2 (Cons 3 EmptyList))



List type constructor

type List a
  = EmptyList
  | Cons a (List a)

>>> []
EmptyList

>>> [1, 2, 3]
Cons 1 (Cons 2 (Cons 3 EmptyList))



List type constructor

type List a
  = EmptyList
  | Cons a (List a)

>>> []
EmptyList

>>> [1, 2, 3]
Cons 1 (Cons 2 (Cons 3 EmptyList))          -- a = Int



List type constructor

type List a
  = EmptyList
  | Cons a (List a)

>>> []
EmptyList

>>> [1, 2, 3]
Cons 1 (Cons 2 (Cons 3 EmptyList))          -- a = Int



List type constructor

type List a
  = EmptyList
  | Cons a (List a)

>>> []
EmptyList

>>> [1, 2, 3]
Cons 1 (Cons 2 (Cons 3 EmptyList))          -- a = Int



Quick aside: strings

type alias String = List Character

>>> “Hello”
[‘H’, ‘e’, ‘l’, ‘l’, ‘o’]
-- Cons ‘H’ (Cons ‘e’ (Cons ‘l’ (Cons ‘l’ (Cons ‘o’ EmptyList))))

>>> find ‘e’ “Hello”
Just 1



List is not a type! (List a is)

● List Bool
[], [True], [False], [True, False, True], ...

● List Character
[], [‘a’], [‘b’, ‘c’], [‘d’, ‘d’, ‘d’, ‘e’], ...

● List Integer
[], [1], [-1, 0, 1], [3, 3, 3, 3, 3], [4], ...

● List
???



● List (Maybe Bool) [],
[Just False],
[Just True, Nothing],
[Nothing], ...

● Maybe (List Bool) Nothing,
Just [True, False],
Just [True],
Just [False],
Just [False, False, False], ...

Quick aside: composing types (order matters!)



type BinaryTree a
  = Leaf a
  | Node (BinaryTree a) a (BinaryTree a)

Example: binary trees



type Pair a b
  = P a b

Example: pairs

>>> a = (P 103 “hi”)
(P 103 “hi”) : Pair Integer String

Commonly denoted:
>>> b = (103, “hi”)
(103, “hi”) : (Integer, String)



type alias Zipper a
 = (List a, List a)

Final example: list zipper
>>> a = ([1, 2, 3, 4], [])
([1, 2, 3, 4], [])
>>> b = next a
([2, 3, 4], [1])
>>> c = next b
([3, 4], [2, 1])
>>> d = next c
([4], [3, 2, 1])
>>> e = prev d
([3, 4], [2, 1])
>>> focus e
3



Why are algebraic data types useful?



Benefits of ADTs

+ Provide an incredibly general mechanism to describe types

+ Allow us to express types like Maybe a
○ Eliminate an entire class of bugs: null pointer exceptions

+ Promote composability of types (code reuse = good)

+ Urge us to fully consider our problem domain before coding

− Can be too general/abstract to understand easily “in the wild”
○ To avoid incomprehensible code: choose the simplest possible 

abstraction needed for the problem at hand



So... who has ‘em?
● Elm
● Haskell
● Kotlin
● ML (OCaml, Standard ML, ...)
● Nim
● Rust
● Scala
● Swift
● Typescript

More: https://en.wikipedia.org/wiki/Algebraic_data_type#Programming_languages_with_algebraic_data_types

https://en.wikipedia.org/wiki/Algebraic_data_type#Programming_languages_with_algebraic_data_types


That’s great and all, but...



Why are algebraic data types cool?



Answer: math
● Why are algebraic data types called “algebraic”?

● Question: Let N be the number of values of type a. How many values of type 
Maybe a are there?

● Answer: N + 1. We have all the values of type a and also Nothing.

● Question: Is there a systematic way of answering these kinds of questions?

● Answer: Yes! ☺



A closer look at the ADT of Maybe a

type Maybe a
  = Just a
  | Nothing

Size(Maybe a)
    = Size(Just a) + Size(Nothing)
    = N + 1.

Associated function:
    M(a) = a + 1.



A closer look at the ADT of Pair a b

type Pair a b
  = P a b

Size(Pair a b)
    = Size(a) · Size(b)

Associated function:
    P(a, b) = a · b.



Sum and product types

type Maybe a
  = Just a
  | Nothing

type Pair a b
  = P a b

type Shape
  = Rectangle Float Float Float Float
  | Circle Float Float Float



We can define addition and 
multiplication on types... 
what else can we define?



A closer look at the ADT of List a

type List a
  = EmptyList
  | Cons a (List a)

Associated function:
    L(a) = 1 + a·L(a)
    ⇒  L(a) – a·L(a) = 1
    ⇒  L(a)·(1 – a) = 1
    ⇒  L(a) = 1 / (1 – a).



A closer look at the ADT of Zipper a

type alias Zipper a
 = (List a, List a)

Associated function:
    Z(a) = L(a) · L(a)
    ⇒  Z(a) = L(a)2.



Subtraction? Division? Do 
those even make sense?



A better question: why stop there?



A better question: why stop there?



Calculus on algebraic data types

We know:
● L(a) = 1 / (1 – a)
● Z(a) = L(a)2

Let’s find dL/da:
dL/da = d/da [ L(a) ]

= d/da [ 1 / (1 – a) ]
= 1 / (1 – a)2

= [ 1 / (1 – a) ]2

= L(a)2

= Z(a).



The derivative of a list is a 
zipper?! How could this 
possibly make any sense?!



A shift in perspective
● Derivative = slope at a point...?

○ ... really, derivative = local information at a point
○ With the derivative, we know the slope locally, but that doesn’t tell us anything about the 

behavior of a function globally
○ Contrast: integration = global information

● Key point: zippers tell us local information about a list by means of a 
single, focused element

● If we run a zipper along the entirety of a list (if we “integrate” the zipper), 
we get information about the list globally
○ ⭐ Fundamental theorem of calculus! ⭐



Questions we answered

A. What is an algebraic data type?

B. Why are algebraic data types useful?

C. Why are algebraic data types cool?



Interested in more?
● CMSC 16100 includes a lot of content about ADTs and related concepts

● Wikipedia:
https://en.wikipedia.org/wiki/Algebraic_data_type

● If you want more generality:
https://en.wikipedia.org/wiki/Generalized_algebraic_data_type

● My first introduction to the subject of calculus on ADTs, a very well-written series: 
http://chris-taylor.github.io/blog/2013/02/10/the-algebra-of-algebraic-data-types/

● Another good article about calculus on ADTs:
https://codewords.recurse.com/issues/three/algebra-and-calculus-of-algebraic-data-types

https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Generalized_algebraic_data_type
http://chris-taylor.github.io/blog/2013/02/10/the-algebra-of-algebraic-data-types/
https://codewords.recurse.com/issues/three/algebra-and-calculus-of-algebraic-data-types


Thank you!
Justin Lubin

justinlubin@uchicago.edu

A big thanks to Asynchronous Anonymous, too!
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